MEM6810 Engineering Systems Modeling and Simulation 工程系统建模与仿真

Theory

Lecture 2: Elements of Probability and Statistics

SHEN Haihui 沈海辉

Sino-US Global Logistics Institute Shanghai Jiao Tong University

shenhaihui.github.io/teaching/mem6810f shenhaihui@sjtu.edu.cn

Spring 2024 (full-time)

- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- **5** Useful Inequalities
- 6 Convergence
- Properties of a Random Sample

2 Random Variables & Distributions

3 Expectations

4 Common Distributions

Useful Inequalities

6 Convergence

Properties of a Random Sample

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

• Ω , sample space: A set of *all* possible outcomes.

A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:

- Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω, is called an event.

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω, is called an event.
 - *F*, *σ*-algebra (or *σ*-field): A set of events, i.e., a set of some subsets of Ω, such that:

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω, is called an event.
 - \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:

 $1 \Omega \in \mathcal{F};$

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
 - \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $1 \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
 - *F*, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
 - $1 \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - Closed under countable unions:[†] If A_i ∈ F, i = 1, 2, ..., is a countable sequence of sets, then ∪_{i=1}[∞] A_i ∈ F.

[†]It implies that \mathcal{F} is also closed under countable intersections.

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
 - \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $1 \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - 3 Closed under countable unions:[†] If A_i ∈ F, i = 1, 2, ..., is a countable sequence of sets, then ∪_{i=1}[∞] A_i ∈ F.
 - $\mathbb{P}: \mathcal{F} \to [0, 1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:

[†]It implies that \mathcal{F} is also closed under countable intersections.

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
 - \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $1 \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - 3 Closed under countable unions:[†] If A_i ∈ F, i = 1, 2, ..., is a countable sequence of sets, then ∪_{i=1}[∞] A_i ∈ F.
 - P: F → [0, 1], probability function (or probability measure): A function that assigns probabilities to events, such that:
 P(A) ∈ [0, 1] for any A ∈ F;

上海交通大学 SHANGHAI JIAO TONG UNIVERSIT

[†]It implies that \mathcal{F} is also closed under countable intersections.

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
 - *F*, σ-algebra (or σ-field): A set of events, i.e., a set of some subsets of Ω, such that:
 - $1 \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - 3 Closed under countable unions:[†] If A_i ∈ F, i = 1, 2, ..., is a countable sequence of sets, then ∪_{i=1}[∞] A_i ∈ F.
 - $\mathbb{P}: \mathcal{F} \to [0, 1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:

1
$$\mathbb{P}(A) \in [0, 1]$$
 for any $A \in \mathcal{F}$;
2 $\mathbb{P}(\Omega) = 1$;

上海文道大学 SHANGHAI JIAO TONG UNIVERSIT

[†]It implies that \mathcal{F} is also closed under countable intersections.

- A probability space is a triplet $(\Omega, \mathcal{F}, \mathbb{P})$:
 - Ω , sample space: A set of *all* possible outcomes.
 - A set of *some* outcomes, as a subset of Ω , is called an **event**.
 - \mathcal{F} , σ -algebra (or σ -field): A set of events, i.e., a set of some subsets of Ω , such that:
 - $1 \ \Omega \in \mathcal{F};$
 - **2** Closed under complementation: If $A \in \mathcal{F}$, then $A^{c} \in \mathcal{F}$;
 - 3 Closed under countable unions:[†] If A_i ∈ F, i = 1, 2, ..., is a countable sequence of sets, then ∪_{i=1}[∞] A_i ∈ F.
 - $\mathbb{P}: \mathcal{F} \to [0, 1]$, probability function (or probability measure): A function that assigns probabilities to events, such that:
 - **1** $\mathbb{P}(A) \in [0, 1]$ for any $A \in \mathcal{F}$;
 - $(\Omega) = 1;$
 - 3 Countably additive: If A_i ∈ F, i = 1, 2, ..., is a countable sequence of disjoint sets, then P(∪_{i=1}[∞]A_i) = ∑_{i=1}[∞] P(A_i).

^TIt implies that \mathcal{F} is also closed under countable intersections.

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$

•
$$\mathcal{F} = \{\emptyset, \{H\}, \{T\}, \Omega\};$$

•
$$\mathbb{P}(\emptyset) = 0$$
, $\mathbb{P}(\{\mathsf{H}\}) = 1/2$, $\mathbb{P}(\{\mathsf{T}\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{\mathsf{H}\}, \{\mathsf{T}\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{H}\}) = 1/2$, $\mathbb{P}(\{\mathsf{T}\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
 - $\Omega = \{\mathsf{R} (\mathsf{red}), \mathsf{G} (\mathsf{green}), \mathsf{B} (\mathsf{blue})\};$
 - $\mathcal{F} = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{R}\}) = \mathbb{P}(\{\mathsf{G}\}) = \mathbb{P}(\{\mathsf{B}\}) = 1/3$, $\mathbb{P}(\{\mathsf{R},\mathsf{G}\}) = \mathbb{P}(\{\mathsf{R},\mathsf{B}\}) = \mathbb{P}(\{\mathsf{G},\mathsf{B}\}) = 2/3$, and $\mathbb{P}(\Omega) = 1$;

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{\mathsf{H}\}, \{\mathsf{T}\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{H}\}) = 1/2$, $\mathbb{P}(\{\mathsf{T}\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
 - Ω = {R (red), G (green), B (blue)};
 F = {Ø, {R}, {G}, {B}, {R,G}, {R,B}, {G,B}, Ω};
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{R}\}) = \mathbb{P}(\{\mathsf{G}\}) = \mathbb{P}(\{\mathsf{B}\}) = 1/3$, $\mathbb{P}(\{\mathsf{R},\mathsf{G}\}) = \mathbb{P}(\{\mathsf{R},\mathsf{B}\}) = \mathbb{P}(\{\mathsf{G},\mathsf{B}\}) = 2/3$, and $\mathbb{P}(\Omega) = 1$;
 - $\mathcal{F}_1 = \{\emptyset, \{\mathsf{R}\}, \{\mathsf{G},\mathsf{B}\}, \Omega\}, \mathcal{F}_2 = \{\emptyset, \{\mathsf{G}\}, \{\mathsf{R},\mathsf{B}\}, \Omega\}...$

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{\mathsf{H}\}, \{\mathsf{T}\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{H}\}) = 1/2$, $\mathbb{P}(\{\mathsf{T}\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).

•
$$\Omega = \{R \text{ (red)}, G \text{ (green)}, B \text{ (blue)}\};$$

• $\mathcal{F} = \{\emptyset, \{R\}, \{G\}, \{B\}, \{R,G\}, \{R,B\}, \{G,B\}, \Omega\};$
• $\mathbb{P}(\emptyset) = 0, \mathbb{P}(\{R\}) = \mathbb{P}(\{G\}) = \mathbb{P}(\{B\}) = 1/3,$

- $\mathbb{P}(\{\mathsf{R},\mathsf{G}\}) = \mathbb{P}(\{\mathsf{R},\mathsf{B}\}) = \mathbb{P}(\{\mathsf{G},\mathsf{B}\}) = 2/3, \text{ and } \mathbb{P}(\Omega) = 1;$ • $\mathcal{F}_1 = \{\emptyset, \{\mathsf{R}\}, \{\mathsf{G},\mathsf{B}\}, \Omega\}, \mathcal{F}_2 = \{\emptyset, \{\mathsf{G}\}, \{\mathsf{R},\mathsf{B}\}, \Omega\}...$
- Example 3: Randomly "draw" a number in [0, 1].

- Example 1: Flip a fair coin.
 - $\Omega = \{H \text{ (head)}, T \text{ (tail)}\};$
 - $\mathcal{F} = \{\emptyset, \{\mathsf{H}\}, \{\mathsf{T}\}, \Omega\};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{H}\}) = 1/2$, $\mathbb{P}(\{\mathsf{T}\}) = 1/2$, and $\mathbb{P}(\Omega) = 1$.
- Example 2: Draw a ball out of 3 balls (red, green, blue).
 - $\Omega = \{ \mathsf{R} (\mathsf{red}), \mathsf{G} (\mathsf{green}), \mathsf{B} (\mathsf{blue}) \};$ • $\mathcal{F} = \{ \emptyset, \{\mathsf{R}\}, \{\mathsf{G}\}, \{\mathsf{B}\}, \{\mathsf{R},\mathsf{G}\}, \{\mathsf{R},\mathsf{B}\}, \{\mathsf{G},\mathsf{B}\}, \Omega \};$
 - $\mathbb{P}(\emptyset) = 0$, $\mathbb{P}(\{\mathsf{R}\}) = \mathbb{P}(\{\mathsf{G}\}) = \mathbb{P}(\{\mathsf{B}\}) = 1/3$, $\mathbb{P}(\{\mathsf{R},\mathsf{G}\}) = \mathbb{P}(\{\mathsf{R},\mathsf{B}\}) = \mathbb{P}(\{\mathsf{G},\mathsf{B}\}) = 2/3$, and $\mathbb{P}(\Omega) = 1$;
 - $\mathcal{F}_1 = \{\emptyset, \{\mathsf{R}\}, \{\mathsf{G},\mathsf{B}\}, \Omega\}, \mathcal{F}_2 = \{\emptyset, \{\mathsf{G}\}, \{\mathsf{R},\mathsf{B}\}, \Omega\}...$
- Example 3: Randomly "draw" a number in [0, 1].
 - $\Omega = [0, 1];$
 - $\mathcal{F}_1 = \{\emptyset, [0, a), [a, 1], \Omega\}, \mathcal{F}_2 = \{\emptyset, (0, a), \{0\} \cup [a, 1], \Omega\}...$
 - A more practical and interesting \mathcal{F} is the one that contains all intervals (no matter open or closed) on [0, 1].

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \,\mathbb{P}(B).$

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B).$

$$\mathbb{P}(A|B) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \mathbb{P}(B).$

$$\mathbb{P}(A|B) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Bayes' Rule:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \mathbb{P}(A)}{\mathbb{P}(B)}$$

 $\mathbb{P}(A \cap B) = \mathbb{P}(A) \,\mathbb{P}(B).$

$$\mathbb{P}(A|B) \coloneqq \frac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}.$$

Bayes' Rule:

$$\mathbb{P}(A|B) = \frac{\mathbb{P}(B|A) \mathbb{P}(A)}{\mathbb{P}(B)}$$

• Events A and B are independent $\iff \mathbb{P}(A|B) = \mathbb{P}(A)$.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - **Pairwise independence** means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.
- Warning: Only having $\mathbb{P}(\cap_{i=1}^{n} A_i) = \prod_{i=1}^{n} \mathbb{P}(A_i)$ is not sufficient!

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.
- Warning: Only having $\mathbb{P}(\cap_{i=1}^{n}A_{i}) = \prod_{i=1}^{n}\mathbb{P}(A_{i})$ is not sufficient!
- Sets A_1, \ldots, A_n are pairwise independent if for any $i \neq j$ we have $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \mathbb{P}(A_j)$.

- For more than two events:
 - Mutual independence (or collective independence) intuitively means that each event is independent of any combination of other events;
 - Pairwise independence means any two events in the collection are independent of each other.
- Sets A_1, \ldots, A_n are (mutually) independent if for any $I \subset \{1, \ldots, n\}$ we have $\mathbb{P}(\cap_{i \in I} A_i) = \prod_{i \in I} \mathbb{P}(A_i)$.
- Warning: Only having $\mathbb{P}(\cap_{i=1}^{n}A_{i}) = \prod_{i=1}^{n}\mathbb{P}(A_{i})$ is not sufficient!
- Sets A_1, \ldots, A_n are pairwise independent if for any $i \neq j$ we have $\mathbb{P}(A_i \cap A_j) = \mathbb{P}(A_i) \mathbb{P}(A_j)$.
- Clearly, mutual independence implies pairwise independence, but not vice versa!

Consider a sequence of sets $\{A_n : n \ge 1\}$.

Consider a sequence of sets $\{A_n : n \ge 1\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^\infty \mathbb{P}(A_n)<\infty,$ then $\mathbb{P}(A_n \text{ i.o.})=0,$ where "i.o." denotes "infinitely often".

Consider a sequence of sets $\{A_n : n \ge 1\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty}\mathbb{P}(A_n)<\infty,$ then $\mathbb{P}(A_n \text{ i.o.})=0,$ where "i.o." denotes "infinitely often".

The Secon Borel-Cantelli Lemma

If $\sum_{n=1}^\infty \mathbb{P}(A_n)=\infty$ and $\{A_n\}$ are independent,^ then $\mathbb{P}(A_n \text{ i.o.})=1.$

^T The assumption of independence can be weakened to pairwise independence, with more difficult proof.^{Mor Town University}

Consider a sequence of sets $\{A_n : n \ge 1\}$.

(The First) Borel-Cantelli Lemma

If $\sum_{n=1}^{\infty}\mathbb{P}(A_n)<\infty,$ then $\mathbb{P}(A_n \text{ i.o.})=0,$ where "i.o." denotes "infinitely often".

The Secon Borel-Cantelli Lemma

If $\sum_{n=1}^\infty \mathbb{P}(A_n)=\infty$ and $\{A_n\}$ are independent,^ then $\mathbb{P}(A_n \text{ i.o.})=1.$

 Remark: For event A, if P(A) = 1, then we say A happens almost surely (a.s.).

^T The assumption of independence can be weakened to pairwise independence, with more difficult proof.^{1000 Town Unit}

2 Random Variables & Distributions

3 Expectations

- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- Properties of a Random Sample

 A random variable (RV) is a function from a sample space Ω into the set of real numbers ℝ.

- A random variable (RV) is a function from a sample space Ω into the set of real numbers ℝ.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X : \Omega \to \mathbb{R}$, such that for any $a \in \mathbb{R}$,

 $\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$

Scalar

- A random variable (RV) is a function from a sample space Ω into the set of real numbers ℝ.
- Formally, given the probability space (Ω, F, P), a RV X is a function X : Ω → ℝ, such that for any a ∈ ℝ,

 $\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$

• For a particular element $\omega \in \Omega$, $X(\omega)$ is called a *realization* of X.

Scalar

- A random variable (RV) is a function from a sample space Ω into the set of real numbers ℝ.
- Formally, given the probability space (Ω, F, P), a RV X is a function X : Ω → ℝ, such that for any a ∈ ℝ,

 $\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$

- For a particular element $\omega \in \Omega$, $X(\omega)$ is called a *realization* of X.
 - Usually, we will simply denote $X(\omega)$ as x when ω is not explicitly shown.

Scalar

- A random variable (RV) is a function from a sample space Ω into the set of real numbers ℝ.
- Formally, given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, a RV X is a function $X : \Omega \to \mathbb{R}$, such that for any $a \in \mathbb{R}$,

 $\{\omega \in \Omega : X(\omega) \le a\} \in \mathcal{F}.$

- For a particular element $\omega \in \Omega$, $X(\omega)$ is called a *realization* of X.
 - Usually, we will simply denote $X(\omega)$ as x when ω is not explicitly shown.
 - A popular convention is to denote the RVs by upper-case letters (e.g., X and Y) and their realizations by lower-case letters (e.g., x and y).

• Example 1': Let X(H) = 0, X(T) = 1.

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 1$.

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 1$.
- Example 3':

• Under
$$(\Omega, \mathcal{F}_1, \mathbb{P})$$
, let $X(\omega) \coloneqq \begin{cases} 0, & \text{if } \omega \in [0, a), \\ 1, & \text{if } \omega \in [a, 1]. \end{cases}$

- Example 1': Let X(H) = 0, X(T) = 1.
- Example 2':
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 2$.
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\mathsf{R}) = 0$, $X(\mathsf{G}) = 1$, and $X(\mathsf{B}) = 1$.
- Example 3':
 - Under $(\Omega, \mathcal{F}_1, \mathbb{P})$, let $X(\omega) \coloneqq \begin{cases} 0, & \text{if } \omega \in [0, a), \\ 1, & \text{if } \omega \in [a, 1]. \end{cases}$
 - Under $(\Omega, \mathcal{F}, \mathbb{P})$, let $X(\omega) = \omega$ for $\omega \in [0, 1]$.

$$F(x) \coloneqq \mathbb{P}(X \le x) = \mathbb{P}(\{\omega \in \Omega : X(\omega) \le x\}), \ \forall x \in \mathbb{R},$$

 $F(x)\coloneqq \mathbb{P}(X\leq x)=\mathbb{P}(\{\omega\in\Omega: X(\omega)\leq x\}), \ \forall x\in\mathbb{R},$

and the following is satisfied:

11 / 65

 $F(x)\coloneqq \mathbb{P}(X\leq x)=\mathbb{P}(\{\omega\in\Omega: X(\omega)\leq x\}), \ \forall x\in\mathbb{R},$

and the following is satisfied:

• $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$;

11 / 65

 $F(x)\coloneqq \mathbb{P}(X\leq x)=\mathbb{P}(\{\omega\in\Omega: X(\omega)\leq x\}), \ \forall x\in\mathbb{R},$

and the following is satisfied:

- $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$;
- F(x) is nondecreasing in x;

11 / 65

 $F(x)\coloneqq \mathbb{P}(X\leq x)=\mathbb{P}(\{\omega\in\Omega: X(\omega)\leq x\}), \; \forall x\in\mathbb{R},$

and the following is satisfied:

- $\lim_{x\to-\infty} F(x) = 0$ and $\lim_{x\to+\infty} F(x) = 1$;
- *F*(*x*) is nondecreasing in *x*;
- F(x) is right-continuous, that is, for any $x_0 \in \mathbb{R}$,

$$\lim_{x \downarrow x_0} F(x) = F(x_0).$$

• A RV X is said to be **discrete** if the set of its possible values is countable.

► Scalar

- A RV X is said to be **discrete** if the set of its possible values is countable.
- The **probability mass function** (pmf) of a discrete RV X is given by

$$p(x)\coloneqq \mathbb{P}(X=x)=\mathbb{P}(\{\omega\in\Omega: X(\omega)=x\}), \ \forall x\in\mathbb{R},$$

12 / 65

- A RV X is said to be **discrete** if the set of its possible values is countable.
- The **probability mass function** (pmf) of a discrete RV X is given by

$$p(x)\coloneqq \mathbb{P}(X=x)=\mathbb{P}(\{\omega\in\Omega: X(\omega)=x\}), \ \forall x\in\mathbb{R},$$

and the following is satisfied:

• $p(x) \ge 0$ for all $x \in \mathbb{R}$;

•
$$\sum_{x \in \mathbb{R}} p(x) = 1.$$

12 / 65

- A RV X is said to be **discrete** if the set of its possible values is countable.
- The **probability mass function** (pmf) of a discrete RV X is given by

$$p(x)\coloneqq \mathbb{P}(X=x)=\mathbb{P}(\{\omega\in\Omega: X(\omega)=x\}), \ \forall x\in\mathbb{R},$$

and the following is satisfied:

•
$$p(x) \ge 0$$
 for all $x \in \mathbb{R}$;
• $\sum_{x \in \mathbb{R}} p(x) = 1$.

• It is easy to see that $F(x) = \sum_{y \in (-\infty, x]} p(y)$.

12 / 65

• A RV X is said to be continuous if there exists a probability density function (pdf) f(x) such that

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) \mathrm{d}t, \ \forall x \in \mathbb{R},$$

• A RV X is said to be continuous if there exists a probability density function (pdf) f(x) such that

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) \mathrm{d}t, \ \forall x \in \mathbb{R},$$

and the following is satisfied:

•
$$f(x) \ge 0$$
 for all $x \in \mathbb{R}$;
• $\int_{-\infty}^{+\infty} f(t) dt = 1.$

13 / 65

• A RV X is said to be continuous if there exists a probability density function (pdf) f(x) such that

$$F(x) = \mathbb{P}(X \le x) = \int_{-\infty}^{x} f(t) \mathrm{d}t, \ \forall x \in \mathbb{R},$$

and the following is satisfied:

•
$$f(x) \ge 0$$
 for all $x \in \mathbb{R}$;
• $\int_{-\infty}^{+\infty} f(t) dt = 1.$

• Observe that $\frac{\mathrm{d}}{\mathrm{d}x}F(x) = f(x)$.

13 / 65

 The joint CDF of RVs X and Y, denoted by F : ℝ×ℝ → [0, 1], is defined by

$$\begin{split} F(x,y) &\coloneqq \mathbb{P}(X \leq x, Y \leq y) \\ &= \mathbb{P}(\{\omega : X(\omega) \leq x\} \cap \{\omega : Y(\omega) \leq y\}), \; \forall x, y \in \mathbb{R}. \end{split}$$

Vector

 The joint CDF of RVs X and Y, denoted by F : ℝ×ℝ → [0, 1], is defined by

$$\begin{split} F(x,y) &\coloneqq \mathbb{P}(X \leq x, Y \leq y) \\ &= \mathbb{P}(\{\omega : X(\omega) \leq x\} \cap \{\omega : Y(\omega) \leq y\}), \; \forall x, y \in \mathbb{R}. \end{split}$$

• For discrete RVs X and Y, the joint pmf is given by

$$p(x, y) \coloneqq \mathbb{P}(X = x, X = y)$$

= $\mathbb{P}(\{\omega : X(\omega) = x\} \cap \{\omega : Y(\omega) = y\}), \forall x, y \in \mathbb{R}.$

14 / 65

 The joint CDF of RVs X and Y, denoted by F : ℝ×ℝ → [0, 1], is defined by

$$\begin{split} F(x,y) &\coloneqq \mathbb{P}(X \leq x, Y \leq y) \\ &= \mathbb{P}(\{\omega : X(\omega) \leq x\} \cap \{\omega : Y(\omega) \leq y\}), \ \forall x, y \in \mathbb{R}. \end{split}$$

• For discrete RVs X and Y, the joint pmf is given by

$$p(x, y) \coloneqq \mathbb{P}(X = x, X = y)$$

= $\mathbb{P}(\{\omega : X(\omega) = x\} \cap \{\omega : Y(\omega) = y\}), \forall x, y \in \mathbb{R}.$

• For continuous RVs X and Y, the joint pdf is $f(\boldsymbol{x},\boldsymbol{y})$ such that

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(t,u) dt du, \ \forall x, y \in \mathbb{R}.$$

• The joint CDF of RVs X and Y, denoted by $F : \mathbb{R} \times \mathbb{R} \to [0, 1]$, is defined by

$$\begin{split} F(x,y) &\coloneqq \mathbb{P}(X \leq x, Y \leq y) \\ &= \mathbb{P}(\{\omega : X(\omega) \leq x\} \cap \{\omega : Y(\omega) \leq y\}), \; \forall x, y \in \mathbb{R}. \end{split}$$

• For discrete RVs X and Y, the joint pmf is given by

$$p(x, y) \coloneqq \mathbb{P}(X = x, X = y)$$

= $\mathbb{P}(\{\omega : X(\omega) = x\} \cap \{\omega : Y(\omega) = y\}), \forall x, y \in \mathbb{R}.$

• For continuous RVs X and Y, the joint pdf is $f(\boldsymbol{x},\boldsymbol{y})$ such that

$$F(x,y) = \int_{-\infty}^{y} \int_{-\infty}^{x} f(t,u) dt du, \ \forall x, y \in \mathbb{R}.$$

• Observe that $\frac{\partial^2 F(x,y)}{\partial x \partial y} = f(x,y).$

- Given the random vector $(X, Y)^{\mathsf{T}}$, the distribution of X or Y is called the marginal distribution.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.

- Given the random vector $(X, Y)^{\mathsf{T}}$, the distribution of X or Y is called the marginal distribution.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.
- If $(X, Y)^{\mathsf{T}}$ is discrete, the marginal pmf of X is

$$p_X(x) = \sum_{y \in \mathbb{R}} p(x, y).$$

Vector

- Given the random vector $(X, Y)^{\mathsf{T}}$, the distribution of X or Y is called the marginal distribution.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.
- If $(X, Y)^{\mathsf{T}}$ is discrete, the marginal pmf of X is

$$p_X(x) = \sum_{y \in \mathbb{R}} p(x, y).$$

• If $(X, Y)^{\mathsf{T}}$ is continuous, the marginal pdf of X is

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}y.$$

- Given the random vector $(X, Y)^{\mathsf{T}}$, the distribution of X or Y is called the marginal distribution.
 - The marginal CDF of X is $F_X(x) = F(x, +\infty)$.
- If $(X, Y)^{\mathsf{T}}$ is discrete, the marginal pmf of X is

$$p_X(x) = \sum_{y \in \mathbb{R}} p(x, y).$$

• If $(X, Y)^{\mathsf{T}}$ is continuous, the marginal pdf of X is

$$f_X(x) = \int_{-\infty}^{+\infty} f(x, y) \mathrm{d}y.$$

 For Y, its marginal CDF, and pmf or pdf, can be determined similarly.

15 / 65

Univariate Transformation - Continuous Case

Let X be a continuous RV, and Y=g(X), where g is a monotone function. Let

$$\mathcal{X} \coloneqq \{x : f_X(x) > 0\}$$
 and $\mathcal{Y} \coloneqq \{y : y = g(x) \text{ for some } x \in \mathcal{X}\}.$

Suppose that $g^{-1}(y)$ has a continuous derivative on \mathcal{Y} . Then,

$$f_Y(y) = \begin{cases} f_X(g^{-1}(y)) \left| \frac{\mathrm{d}}{\mathrm{d}y} g^{-1}(y) \right|, & y \in \mathcal{Y}, \\ 0, & \text{otherwise.} \end{cases}$$

Bivariate Transformation - Continuous Case

Let $(X, Y)^{\mathsf{T}}$ be a continuous bivariate random vector, and $U = g_1(X, Y)$ and $V = g_2(X, Y)$. Let

$$\begin{split} \mathcal{A} &\coloneqq \{(x,y) : f_{X,Y}(x,y) > 0\},\\ \mathcal{B} &\coloneqq \{(u,v) : u = g_1(x,y), v = g_2(x,y) \text{ for some } (x,y) \in \mathcal{A}\}. \end{split}$$

Suppose that $u = g_1(x, y)$ and $v = g_2(x, y)$ define a **oneto-one** transformation of \mathcal{A} **onto** \mathcal{B} , and $x = h_1(u, v)$ and $y = h_2(u, v)$ have continuous partial derivatives on \mathcal{B} . Then,

$$f_{U,V}(u,v) = \begin{cases} f_{X,Y}(h_1(u,v), h_2(u,v)) |J|, & (u,v) \in \mathcal{B}, \\ 0, & \text{otherwise}, \end{cases}$$

given that J is not identically 0 on \mathcal{B} , where J is the Jacobian

of the transformation, i.e.,

$$J = \begin{vmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{vmatrix} = \frac{\partial x}{\partial u} \frac{\partial y}{\partial v} - \frac{\partial y}{\partial u} \frac{\partial x}{\partial v},$$

and

$$\frac{\partial x}{\partial u} = \frac{\partial h_1(u, v)}{\partial u}, \quad \frac{\partial x}{\partial v} = \frac{\partial h_1(u, v)}{\partial v},$$
$$\frac{\partial y}{\partial u} = \frac{\partial h_2(u, v)}{\partial u}, \quad \frac{\partial y}{\partial v} = \frac{\partial h_2(u, v)}{\partial v}.$$

• If $(X, Y)^{\mathsf{T}}$ is discrete, for any y such that $\mathbb{P}(Y = y) = p_Y(y) > 0$, the conditional pmf of X given that Y = y is defined as

$$p(x|y) \coloneqq \mathbb{P}(X = x|Y = y) = \frac{p(x, y)}{p_Y(y)}.$$

If (X, Y)^T is discrete, for any y such that P(Y = y) = p_Y(y)
 > 0, the conditional pmf of X given that Y = y is defined as

$$p(x|y) \coloneqq \mathbb{P}(X = x|Y = y) = \frac{p(x, y)}{p_Y(y)}.$$

If (X, Y)^T is continuous, for any y such that f_Y(y) > 0, the conditional pdf of X given that Y = y is defined as

$$f(x|y) \coloneqq \frac{f(x,y)}{f_Y(y)}.$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

$$F(x|Y=y) = \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta)$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

$$\begin{split} F(x|Y = y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

$$\begin{split} F(x|Y = y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)] / \Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)] / \Delta} \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

$$\begin{split} F(x|Y = y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)] / \Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)] / \Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{d}{dy} F_Y(y)} \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

F

$$\begin{split} (x|Y = y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)]/\Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)]/\Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{d}{dy} F_Y(y)} = \frac{\frac{\partial}{\partial y} \int_{-\infty}^y \int_{-\infty}^x f(t, u) dt du}{f_Y(y)} \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

F

$$\begin{split} (x|Y = y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)] / \Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)] / \Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{d}{d y} F_Y(y)} = \frac{\frac{\partial}{\partial y} \int_{-\infty}^y \int_{-\infty}^x f(t, u) dt du}{f_Y(y)} \\ &= \frac{\int_{-\infty}^x f(t, y) dt}{f_Y(y)}. \end{split}$$

Intuitively, f(x|y) can be understood as follows (although it is not the most rigorous approach):

Note that

$$\begin{split} F(x|Y=y) &= \lim_{\Delta \to 0} F(x|Y \text{ between } y \text{ and } y + \Delta) \\ &= \lim_{\Delta \to 0} \frac{\mathbb{P}(X \leq x, Y \text{ between } y \text{ and } y + \Delta)}{\mathbb{P}(Y \text{ between } y \text{ and } y + \Delta)} \\ &= \frac{\lim_{\Delta \to 0} [F(x, y + \Delta) - F(x, y)] / \Delta}{\lim_{\Delta \to 0} [F_Y(y + \Delta) - F_Y(y)] / \Delta} \\ &= \frac{\frac{\partial}{\partial y} F(x, y)}{\frac{d}{dy} F_Y(y)} = \frac{\frac{\partial}{\partial y} \int_{-\infty}^y \int_{-\infty}^x f(t, u) dt du}{f_Y(y)} \\ &= \frac{\int_{-\infty}^x f(t, y) dt}{f_Y(y)}. \end{split}$$

2 Then,
$$f(x|y) = \frac{\partial}{\partial x}F(x|Y=y) = \frac{\frac{\partial}{\partial x}\int_{-\infty}^{x}f(t,y)dt}{f_Y(y)} = \frac{f(x,y)}{f_Y(y)}$$
.

$$F(x, y) = F_X(x)F_Y(y),$$

21 / 65

$$F(x, y) = F_X(x)F_Y(y), \text{ or,}$$

$$p(x, y) = p_X(x)p_Y(y),$$

$$F(x, y) = F_X(x)F_Y(y), \text{ or,}$$

$$p(x, y) = p_X(x)p_Y(y), \text{ or,}$$

$$f(x, y) = f_X(x)f_Y(y).$$

$$\begin{split} F(x,y) &= F_X(x)F_Y(y), \text{ or,} \\ p(x,y) &= p_X(x)p_Y(y), \text{ or,} \\ f(x,y) &= f_X(x)f_Y(y). \end{split}$$

- X and Y are independent \iff
 - $p(x|y) \equiv p_X(x)$ or $f(x|y) \equiv f_X(x)$ regardless of the value y;

$$\begin{split} F(x,y) &= F_X(x)F_Y(y), \text{ or,} \\ p(x,y) &= p_X(x)p_Y(y), \text{ or,} \\ f(x,y) &= f_X(x)f_Y(y). \end{split}$$

- X and Y are independent \iff
 - $p(x|y) \equiv p_X(x)$ or $f(x|y) \equiv f_X(x)$ regardless of the value y;
 - $\mathbb{P}(X \in A, Y \in B) = \mathbb{P}(X \in A) \mathbb{P}(X \in B)$ for any $A, B \subset \mathbb{R}$.

• For more than two RVs X_1, \ldots, X_n , the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.

- For more than two RVs X_1, \ldots, X_n , the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- RVs X_1, \ldots, X_n are (mutually) independent if

$$F(x_1, \ldots, x_n) \equiv F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n), \text{ or,}$$

$$p(x_1, \ldots, x_n) \equiv p_{X_1}(x_1) \times \cdots \times p_{X_n}(x_n), \text{ or,}$$

$$f(x_1, \ldots, x_n) \equiv f_{X_1}(x_1) \times \cdots \times f_{X_n}(x_n).$$

- For more than two RVs X_1, \ldots, X_n , the joint CDF, joint pmf or pdf, and the marginal pmf or pdf, are defined analogically.
- RVs X_1, \ldots, X_n are (mutually) independent if

$$F(x_1, \ldots, x_n) \equiv F_{X_1}(x_1) \times \cdots \times F_{X_n}(x_n), \text{ or,}$$

$$p(x_1, \ldots, x_n) \equiv p_{X_1}(x_1) \times \cdots \times p_{X_n}(x_n), \text{ or,}$$

$$f(x_1, \ldots, x_n) \equiv f_{X_1}(x_1) \times \cdots \times f_{X_n}(x_n).$$

• RVs X_1, \ldots, X_n are pairwise independent if for any $i \neq j$, $X_i \perp X_j$.

1 Probability Space

2 Random Variables & Distributions

3 Expectations

4 Common Distributions

5 Useful Inequalities

6 Convergence

Properties of a Random Sample

$$\mathbb{E}[X] \coloneqq \int_{\Omega} X(\omega) \mathrm{d} \, \mathbb{P}(\omega),$$

provided that $\int_\Omega |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \ge 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

24 / 65

Definition

$$\mathbb{E}[X] \coloneqq \int_{\Omega} X(\omega) \mathrm{d} \, \mathbb{P}(\omega),$$

provided that $\int_\Omega |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \ge 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

• For function $h : \mathbb{R} \to \mathbb{R}$, $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega)$.

24 / 65

Definition

$$\mathbb{E}[X] \coloneqq \int_{\Omega} X(\omega) \mathrm{d} \, \mathbb{P}(\omega),$$

provided that $\int_\Omega |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \ge 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h : \mathbb{R} \to \mathbb{R}$, $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega)$.
- If X is a discrete RV:
 - $\mathbb{E}[X] = \sum_{x \in \mathbb{R}} xp(x);$
 - $\mathbb{E}[h(X)] = \sum_{x \in \mathbb{R}} h(x) p(x).$

Definition

$$\mathbb{E}[X] \coloneqq \int_{\Omega} X(\omega) \mathrm{d} \, \mathbb{P}(\omega),$$

provided that $\int_\Omega |X(\omega)| \mathrm{d}\, \mathbb{P}(\omega) < \infty$ or $X \ge 0$ a.s., where the integral is the Lebesgue integral, rather than the Riemann integral.

- For function $h : \mathbb{R} \to \mathbb{R}$, $\mathbb{E}[h(X)] = \int_{\Omega} h(X(\omega)) d\mathbb{P}(\omega)$.
- If X is a discrete RV:

•
$$\mathbb{E}[X] = \sum_{x \in \mathbb{R}} xp(x);$$

- $\mathbb{E}[h(X)] = \sum_{x \in \mathbb{R}} h(x)p(x).$
- If X is a continuous RV:
 - $\mathbb{E}[X] = \int_{-\infty}^{+\infty} x f(x) \mathrm{d}x;$
 - $\mathbb{E}[h(X)] = \int_{-\infty}^{+\infty} h(x)f(x)dx.$

Definition

• For integer n, $\mathbb{E}[X^n]$ is called the *n*th moment of X, and $\mathbb{E}[(X - \mathbb{E}[X])^n]$ is called the *n*th central moment of X.

Expectations

- For integer n, $\mathbb{E}[X^n]$ is called the *n*th moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the *n*th central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.

- For integer n, $\mathbb{E}[X^n]$ is called the *n*th moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the *n*th central moment of X.
- Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 := \operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$

- Expectations
 - For integer n, $\mathbb{E}[X^n]$ is called the *n*th moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the *n*th central moment of X.
 - Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 := \operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$
 - Linear association:
 - Covariance: $\operatorname{Cov}(X, Y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$

- Expectations
 - For integer n, $\mathbb{E}[X^n]$ is called the *n*th moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the *n*th central moment of X.
 - Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 := \operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$
 - Linear association:
 - Covariance: $\operatorname{Cov}(X, Y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$
 - Correlation: $\rho(X, Y) \coloneqq \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)\operatorname{Var}(Y)}}.$

- Expectations
 - For integer n, $\mathbb{E}[X^n]$ is called the *n*th moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the *n*th central moment of X.
 - Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 := \operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$
 - Linear association:
 - Covariance: $\operatorname{Cov}(X, Y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$ • Correlation: $\rho(X, Y) \coloneqq \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}.$
 - In general, $X \perp Y \rightleftharpoons \rho(X, Y) = 0 \iff \operatorname{Cov}(X, Y) = 0.$

- Expectations
 - For integer n, $\mathbb{E}[X^n]$ is called the *n*th moment of X, and $\mathbb{E}[(X \mathbb{E}[X])^n]$ is called the *n*th central moment of X.
 - Some special moments:
 - Mean (1st moment): $\mu \coloneqq \mathbb{E}[X]$.
 - Variance (2nd central moment): $\sigma^2 := \operatorname{Var}(X) := \mathbb{E}[(X - \mathbb{E}[X])^2] = \mathbb{E}[X^2] - (\mathbb{E}[X])^2.$
 - Linear association:
 - Covariance: $\operatorname{Cov}(X, Y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])(Y - \mathbb{E}[Y])] = \mathbb{E}[XY] - \mathbb{E}[X] \mathbb{E}[Y].$ • Correlation: $\rho(X, Y) \coloneqq \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \operatorname{Var}(Y)}}.$
 - In general, $X \perp Y \iff \rho(X, Y) = 0 \iff \operatorname{Cov}(X, Y) = 0.$
 - If $(X, Y)^{\mathsf{T}}$ follows a bivariate normal distribution,[†] then $X \perp Y \iff \rho(X, Y) = 0.$

[†]**CAUTION:** It means MORE than that X and Y both follow a normal distribution! More details latter.¹ Toron University of the second secon

$$\mathbb{E}[X|y] \coloneqq \begin{cases} \sum_{x \in \mathbb{R}} xp(x|y), & \text{ if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} xf(x|y) \mathrm{d}x, & \text{ if } X \text{ is continuous.} \end{cases}$$

$$\mathbb{E}[X|y] \coloneqq \begin{cases} \sum_{x \in \mathbb{R}} xp(x|y), & \text{ if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} xf(x|y) \mathrm{d}x, & \text{ if } X \text{ is continuous.} \end{cases}$$

• The conditional variance of X given Y = y is

$$\operatorname{Var}(X|y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

$$\mathbb{E}[X|y] \coloneqq \begin{cases} \sum_{x \in \mathbb{R}} xp(x|y), & \text{ if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} xf(x|y) \mathrm{d}x, & \text{ if } X \text{ is continuous.} \end{cases}$$

• The conditional variance of X given Y = y is

$$\operatorname{Var}(X|y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

• If $X \not\perp Y$, then $\mathbb{E}[X|y]$ and $\operatorname{Var}(X|y)$ are functions of y.

$$\mathbb{E}[X|y] \coloneqq \begin{cases} \sum_{x \in \mathbb{R}} xp(x|y), & \text{ if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} xf(x|y) \mathrm{d}x, & \text{ if } X \text{ is continuous.} \end{cases}$$

• The conditional variance of X given Y = y is

$$\operatorname{Var}(X|y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

- If $X \not\perp Y$, then $\mathbb{E}[X|y]$ and $\operatorname{Var}(X|y)$ are functions of y.
- If $X \not\perp Y$, then $\mathbb{E}[X|Y]$ and Var(X|Y) are also RVs, whose value depends on the value of Y.

$$\mathbb{E}[X|y] \coloneqq \begin{cases} \sum_{x \in \mathbb{R}} xp(x|y), & \text{ if } X \text{ is discrete,} \\ \int_{-\infty}^{+\infty} xf(x|y) \mathrm{d}x, & \text{ if } X \text{ is continuous.} \end{cases}$$

• The conditional variance of X given Y = y is

$$\operatorname{Var}(X|y) \coloneqq \mathbb{E}[(X - \mathbb{E}[X])^2|y] = \mathbb{E}[X^2|y] - (\mathbb{E}[X|y])^2.$$

- If $X \not\perp Y$, then $\mathbb{E}[X|y]$ and $\operatorname{Var}(X|y)$ are functions of y.
- If $X \not\perp Y$, then $\mathbb{E}[X|Y]$ and Var(X|Y) are also RVs, whose value depends on the value of Y.
- If $X \perp Y$, then $\mathbb{E}[X|y] = \mathbb{E}[X|Y] = \mathbb{E}[X]$, and $\operatorname{Var}(X|y) = \operatorname{Var}(X|Y) = \operatorname{Var}(X)$.

•
$$\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y).$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y).$
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y).$
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X].$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y).$
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X].$
- $\operatorname{Var}(X) = \mathbb{E}[\operatorname{Var}(X|Y)] + \operatorname{Var}(\mathbb{E}[X|Y]).$

- $\mathbb{E}[aX + bY] = a \mathbb{E}[X] + b \mathbb{E}[Y].$
- $\operatorname{Var}(aX + bY) = a^2 \operatorname{Var}(X) + 2ab \operatorname{Cov}(X, Y) + b^2 \operatorname{Var}(Y).$
- $\operatorname{Cov}(aX + bY, cW + dV) = ac \operatorname{Cov}(X, W) + ad \operatorname{Cov}(X, V) + bc \operatorname{Cov}(Y, W) + bd \operatorname{Cov}(Y, V).$
- $\mathbb{E}[\mathbb{E}[X|Y]] = \mathbb{E}[X].$
- $\operatorname{Var}(X) = \mathbb{E}[\operatorname{Var}(X|Y)] + \operatorname{Var}(\mathbb{E}[X|Y]).$
- If $X \perp Y$, then $\mathbb{E}[XY] = \mathbb{E}[X] \mathbb{E}[Y]$.

• For a RV X, the moment generating function (mgf), denoted by $M_X(t)$, is

$$M_X(t) = \mathbb{E}\left[e^{tX}\right], \ t \in \mathbb{R}.$$

• For a RV X, the moment generating function (mgf), denoted by $M_X(t)$, is

$$M_X(t) = \mathbb{E}\left[e^{tX}\right], \ t \in \mathbb{R}.$$

• If $M_X(t)$ is finite for t in some neighborhood of 0 (i.e., there is an h > 0 such that for all $t \in (-h, h)$, $M_X(t) < \infty$), then,

$$\mathbb{E}[X^n] = \frac{\mathrm{d}^n}{\mathrm{d}t^n} M_X(t) \Big|_{t=0}, \ n \in \mathbb{N}.$$

1 Probability Space

2 Random Variables & Distributions

3 Expectations

- 4 Common Distributions
- 5 Useful Inequalities
- 6 Convergence
- Properties of a Random Sample

29 / 65

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

•
$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$.

30 / 65

Discrete

Discrete

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

•
$$\mathbb{E}[X] = p$$
, $\operatorname{Var}(X) = p(1-p)$.

• The value X = 1 is often termed a "success" and p is referred to as the success probability.

30 / 65

Discrete

• $X \sim \operatorname{Bernoulli}(p)$ or $\operatorname{Ber}(p)$, if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

•
$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$.

- The value X = 1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.

• Discrete

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

•
$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$.

- The value X = 1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.

•
$$Y = \sum_{i=1}^{n} X_i$$
, where $X_i \sim \text{Ber}(p)$ are iid.

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

•
$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$.

- The value X = 1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.

•
$$Y = \sum_{i=1}^{n} X_i$$
, where $X_i \sim Ber(p)$ are iid.

• $p(y) = \mathbb{P}(Y = y) = \binom{n}{y} p^y (1-p)^{n-y}, \quad y = 0, 1, \dots, n.$

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

•
$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$.

- The value X = 1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.

•
$$Y = \sum_{i=1}^{n} X_i$$
, where $X_i \sim Ber(p)$ are iid.

- $p(y) = \mathbb{P}(Y = y) = {n \choose y} p^y (1-p)^{n-y}, \quad y = 0, 1, \dots, n.$
- $\mathbb{E}[Y] = np$, $\operatorname{Var}(Y) = np(1-p)$.

• $X \sim \text{Bernoulli}(p)$ or Ber(p), if

$$X = \begin{cases} 1, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p, \end{cases} \quad p \in [0, 1].$$

•
$$\mathbb{E}[X] = p$$
, $Var(X) = p(1-p)$.

- The value X = 1 is often termed a "success" and p is referred to as the success probability.
- Y ~ binomial(n, p) or B(n, p): The number of successes among n (mutually) independent and identically distributed (iid) Ber(p) trials.
 - $Y = \sum_{i=1}^{n} X_i$, where $X_i \sim Ber(p)$ are iid.
 - $p(y) = \mathbb{P}(Y = y) = \binom{n}{y} p^y (1 p)^{n-y}, \quad y = 0, 1, \dots, n.$
 - $\mathbb{E}[Y] = np$, $\operatorname{Var}(Y) = np(1-p)$.
- If $Y_1 \sim B(n_1, p)$ and $Y_2 \sim B(n_2, p)$ are independent, then $Y_1 + Y_2 \sim B(n_1 + n_2, p)$.

• $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.

31 / 65

- Y ~ negative binomial(r, p) or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$

- Y ~ negative binomial(r, p) or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$

•
$$\mathbb{E}[Y] = r + r(1-p)/p$$
, $Var(Y) = r(1-p)/p^2$.

- Y ~ negative binomial(r, p) or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {\binom{y-1}{r-1}}p^r(1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.
 - When r = 1, it becomes the geometric distribution.

- $Y \sim \text{negative binomial}(r, p)$ or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {\binom{y-1}{r-1}}p^r(1-p)^{y-r}, \quad y = r, r+1, \dots$
 - $\mathbb{E}[Y] = r + r(1-p)/p$, $Var(Y) = r(1-p)/p^2$.
 - When r = 1, it becomes the geometric distribution.
- Y ~ geometric(p) or Geo(p): The number of iid Ber(p) trials to obtain the first success.

- Y ~ negative binomial(r, p) or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {\binom{y-1}{r-1}}p^r(1-p)^{y-r}, \quad y = r, r+1, \dots$

•
$$\mathbb{E}[Y] = r + r(1-p)/p$$
, $Var(Y) = r(1-p)/p^2$.

- When r = 1, it becomes the geometric distribution.
- $Y \sim \text{geometric}(p)$ or Geo(p): The number of iid Ber(p) trials to obtain the first success.

•
$$p(y) = \mathbb{P}(Y = y) = p(1-p)^{y-1}$$
, $y = 1, 2, \dots$

•
$$\mathbb{E}[Y] = 1/p$$
, $Var(Y) = (1-p)/p^2$.

31 / 65

- Y ∼ negative binomial(r, p) or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {y-1 \choose r-1} p^r (1-p)^{y-r}, \quad y = r, r+1, \dots$

•
$$\mathbb{E}[Y] = r + r(1-p)/p$$
, $Var(Y) = r(1-p)/p^2$.

- When r = 1, it becomes the geometric distribution.
- Y ~ geometric(p) or Geo(p): The number of iid Ber(p) trials to obtain the first success.
 - $p(y) = \mathbb{P}(Y = y) = p(1-p)^{y-1}, \quad y = 1, 2, \dots$
 - $\mathbb{E}[Y] = 1/p$, $Var(Y) = (1-p)/p^2$.
 - Memoryless Property: For integers s > t,

$$\begin{split} \mathbb{P}(Y > s | Y > t) &= \frac{\mathbb{P}(Y > s, Y > t)}{\mathbb{P}(Y > t)} = \frac{\mathbb{P}(Y > s)}{\mathbb{P}(Y > t)} = \frac{(1 - p)^s}{(1 - p)^t} = (1 - p)^{s - t} \\ &= \mathbb{P}(X > s - t). \end{split}$$

- Y ∼ negative binomial(r, p) or NB(r, p): The number of iid Ber(p) trials to obtain r successes.
 - $p(y) = \mathbb{P}(Y = y) = {\binom{y-1}{r-1}}p^r(1-p)^{y-r}, \quad y = r, r+1, \dots$

•
$$\mathbb{E}[Y] = r + r(1-p)/p$$
, $Var(Y) = r(1-p)/p^2$.

- When r = 1, it becomes the geometric distribution.
- Y ~ geometric(p) or Geo(p): The number of iid Ber(p) trials to obtain the first success.
 - $p(y) = \mathbb{P}(Y = y) = p(1 p)^{y-1}, \quad y = 1, 2, \dots$
 - $\mathbb{E}[Y] = 1/p$, $Var(Y) = (1-p)/p^2$.
 - Memoryless Property: For integers s > t,

$$\begin{split} \mathbb{P}(Y > s | Y > t) &= \frac{\mathbb{P}(Y > s, Y > t)}{\mathbb{P}(Y > t)} = \frac{\mathbb{P}(Y > s)}{\mathbb{P}(Y > t)} = \frac{(1 - p)^s}{(1 - p)^t} = (1 - p)^{s - t} \\ &= \mathbb{P}(X > s - t). \end{split}$$

• If $Y_1 \sim \text{NB}(r_1, p)$ and $Y_2 \sim \text{NB}(r_2, p)$ are independent, then $Y_1 + Y_2 \sim \text{NB}(r_1 + r_2, p)$.

31 / 65

• Poisson distribution is often used to model the number of occurrence in a given time interval.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]

^TSee more detailed discussion in Lec 3.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots$$

^TSee more detailed discussion in Lec 3.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots$$

• It can be verified that $\sum_{x=0}^{\infty} p(x) = 1$.

^TSee more detailed discussion in Lec 3.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots$$

- It can be verified that $\sum_{x=0}^{\infty} p(x) = 1$.
- $\mathbb{E}[X] = \lambda$, $\operatorname{Var}(X) = \overline{\lambda}$.

^TSee more detailed discussion in Lec 3.

- Poisson distribution is often used to model the number of occurrence in a given time interval.
- One of the basic assumptions is that, for very small time intervals, the probability of an occurrence is proportional to the length of the time interval.[†]
- $X \sim \text{Poisson}(\lambda)$ or $\text{Pois}(\lambda)$, with $\lambda > 0$, if

$$p(x) = \mathbb{P}(X = x) = \frac{e^{-\lambda}\lambda^x}{x!}, \quad x = 0, 1, \dots$$

- It can be verified that Σ[∞]_{x=0} p(x) = 1.
 𝔼[X] = λ, Var(X) = λ.
- If X₁ ~ Pois(λ₁) and X₂ ~ Pois(λ₂) are independent,
 - $X_1 + X_2 \sim \operatorname{Pois}(\lambda_1 + \lambda_2);$
 - Given $X_1 + X_2 = n$, $X_1 \sim B(n, \lambda_1/(\lambda_1 + \lambda_2))$.

[†]See more detailed discussion in Lec 3.

• $X \sim uniform(a, b)$ or Unif(a, b) with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

33 / 65

• $X \sim uniform(a, b)$ or Unif(a, b) with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

Continuous

33 / 65

• $X \sim uniform(a, b)$ or Unif(a, b) with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

X ~ exponential(λ) or Exp(λ), with λ > 0, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

33 / 65

• $X \sim uniform(a, b)$ or Unif(a, b) with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

• $X \sim \text{exponential}(\lambda)$ or $\text{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

• λ is called the rate parameter.

33 / 65

• $X \sim uniform(a, b)$ or Unif(a, b) with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

• $X \sim \text{exponential}(\lambda)$ or $\text{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

- λ is called the rate parameter.
- $F(x) = 1 e^{-\lambda x}$, $\mathbb{P}(X > x) = 1 F(x) = e^{-\lambda x}$.

33 / 65

• $X \sim uniform(a, b)$ or Unif(a, b) with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

• $X \sim \operatorname{exponential}(\lambda)$ or $\operatorname{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

•
$$\lambda$$
 is called the rate parameter.

•
$$F(x) = 1 - e^{-\lambda x}$$
, $\mathbb{P}(X > x) = 1 - F(x) = e^{-\lambda x}$.

•
$$\mathbb{E}[X] = 1/\lambda$$
, $\operatorname{Var}(X) = 1/\lambda^2$.

 X ∼ uniform(a, b) or Unif(a, b) with a < b, if its pdf is given by

$$f(x) = \begin{cases} \frac{1}{b-a}, & \text{if } x \in [a, b], \\ 0, & \text{otherwise.} \end{cases}$$

•
$$\mathbb{E}[X] = \frac{b+a}{2}$$
, $Var(X) = \frac{(b-a)^2}{12}$.

• $X \sim \text{exponential}(\lambda)$ or $\text{Exp}(\lambda)$, with $\lambda > 0$, if its pdf is given by

$$f(x) = \lambda e^{-\lambda x}, \quad x \in [0, \infty).$$

- λ is called the rate parameter.
- $F(x) = 1 e^{-\lambda x}$, $\mathbb{P}(X > x) = 1 F(x) = e^{-\lambda x}$.
- $\mathbb{E}[X] = 1/\lambda$, $\operatorname{Var}(X) = 1/\lambda^2$.
- Memoryless Property: For $s > t \ge 0$,

$$\mathbb{P}(X > s | X > t) = \frac{\mathbb{P}(X > s, X > t)}{\mathbb{P}(X > t)} = \frac{\mathbb{P}(X > s)}{\mathbb{P}(X > t)} = \frac{e^{-\lambda s}}{e^{-\lambda t}} = e^{-\lambda(s-t)}$$
$$= \mathbb{P}(X > s - t).$$

33 / 65

Continuous

• If $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \text{Exp}(\lambda_1 + \lambda_2)$.

- If $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \text{Exp}(\lambda_1 + \lambda_2)$.
- If X ~ Exp(λ), then for α > 0, Y := X^{1/α} ~ Weibull(α, β) in shape & scale parametrization with β = (1/λ)^{1/α}, whose pdf is

$$f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$$

34 / 65

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If X ~ Exp(λ), then for α > 0, Y := X^{1/α} ~ Weibull(α, β) in shape & scale parametrization with β = (1/λ)^{1/α}, whose pdf is

$$f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$$

Erlang(k, λ) or Erl(k, λ), with k being a positive integer, is a generalized version of Exp(λ), whose pdf is

$$f(x) = \frac{\lambda^n}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0, \infty).$$

34 / 65

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If X ~ Exp(λ), then for α > 0, Y := X^{1/α} ~ Weibull(α, β) in shape & scale parametrization with β = (1/λ)^{1/α}, whose pdf is

$$f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$$

Erlang(k, λ) or Erl(k, λ), with k being a positive integer, is a generalized version of Exp(λ), whose pdf is

$$f(x) = \frac{\lambda^{n}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0, \infty).$$

•
$$\mathbb{E}[X] = k/\lambda$$
, $\operatorname{Var}(X) = k/\lambda^2$.

- If $X_1 \sim \text{Exp}(\lambda_1)$ and $X_2 \sim \text{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \text{Exp}(\lambda_1 + \lambda_2)$.
- If X ~ Exp(λ), then for α > 0, Y := X^{1/α} ~ Weibull(α, β) in shape & scale parametrization with β = (1/λ)^{1/α}, whose pdf is

$$f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$$

Erlang(k, λ) or Erl(k, λ), with k being a positive integer, is a generalized version of Exp(λ), whose pdf is

$$f(x) = \frac{\lambda^{\kappa}}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0, \infty).$$

Continuous

34 / 65

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If X ~ Exp(λ), then for α > 0, Y := X^{1/α} ~ Weibull(α, β) in shape & scale parametrization with β = (1/λ)^{1/α}, whose pdf is

$$f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$$

Erlang(k, λ) or Erl(k, λ), with k being a positive integer, is a generalized version of Exp(λ), whose pdf is

$$f(x) = \frac{\lambda^n}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0, \infty).$$

• If $X_1 \sim \operatorname{Erl}(k_1, \lambda)$ and $X_2 \sim \operatorname{Erl}(k_2, \lambda)$ are independent, then $X_1 + X_2 \sim \operatorname{Erl}(k_1 + k_2, \lambda)$.

- If $X_1 \sim \operatorname{Exp}(\lambda_1)$ and $X_2 \sim \operatorname{Exp}(\lambda_2)$ are independent, then $\min\{X_1, X_2\} \sim \operatorname{Exp}(\lambda_1 + \lambda_2)$.
- If X ~ Exp(λ), then for α > 0, Y := X^{1/α} ~ Weibull(α, β) in shape & scale parametrization with β = (1/λ)^{1/α}, whose pdf is

$$f(y) = \alpha \beta^{-\alpha} y^{\alpha - 1} e^{-(y/\beta)^{\alpha}}, \quad y \in (0, \infty).$$

Erlang(k, λ) or Erl(k, λ), with k being a positive integer, is a generalized version of Exp(λ), whose pdf is

$$f(x) = \frac{\lambda^n}{(k-1)!} x^{k-1} e^{-\lambda x}, \quad x \in [0, \infty).$$

- If $X_1 \sim \operatorname{Erl}(k_1, \lambda)$ and $X_2 \sim \operatorname{Erl}(k_2, \lambda)$ are independent, then $X_1 + X_2 \sim \operatorname{Erl}(k_1 + k_2, \lambda)$.
- If $X \sim \operatorname{Erl}(k, \lambda)$, then $cX \sim \operatorname{Erl}(k, \lambda/c)$ for c > 0. (a) $\mathcal{FFI}(k, \lambda/c)$

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

•
$$\mathbb{E}[X] = \alpha/\lambda$$
, $\operatorname{Var}(X) = \alpha/\lambda^2$.

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

•
$$\mathbb{E}[X] = \alpha/\lambda$$
, $\operatorname{Var}(X) = \alpha/\lambda^2$.

• $\Gamma(\alpha) \coloneqq \int_0^\infty t^{\alpha-1} e^{-t} dt$ is known as the gamma function.

•
$$\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$$
; $\Gamma(n) = (n-1)!$, for integer $n > 0$.

35 / 65

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

•
$$\mathbb{E}[X] = \alpha/\lambda$$
, $\operatorname{Var}(X) = \alpha/\lambda^2$.

- Γ(α) := ∫₀[∞] t^{α-1}e^{-t}dt is known as the gamma function.
 Γ(α + 1) = αΓ(α); Γ(n) = (n 1)!, for integer n > 0.
- If $X_1 \sim \text{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \text{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$.

35 / 65

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

•
$$\mathbb{E}[X] = \alpha/\lambda$$
, $\operatorname{Var}(X) = \alpha/\lambda^2$.

- $\Gamma(\alpha) \coloneqq \int_0^\infty t^{\alpha-1} e^{-t} dt$ is known as the gamma function. • $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$; $\Gamma(n) = (n-1)!$, for integer n > 0.
- If $X_1 \sim \text{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \text{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
- If X ~ Gamma(α, λ), then cX ~ Gamma(α, λ/c) for c > 0.

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

•
$$\mathbb{E}[X] = \alpha/\lambda$$
, $\operatorname{Var}(X) = \alpha/\lambda^2$.

- $\Gamma(\alpha) \coloneqq \int_0^\infty t^{\alpha-1} e^{-t} dt$ is known as the gamma function. • $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$; $\Gamma(n) = (n-1)!$, for integer n > 0.
- If $X_1 \sim \text{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \text{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
- If X ~ Gamma(α, λ), then cX ~ Gamma(α, λ/c) for c > 0.
- Important special cases of $Gamma(\alpha, \lambda)$:
 - α is an integer \Longrightarrow $\operatorname{Erl}(\alpha, \lambda)$; $\alpha = 1 \Longrightarrow \operatorname{Exp}(\lambda)$;

• $X \sim \text{Gamma}(\alpha, \lambda)$ in shape & rate parametrization with $\alpha, \lambda > 0$, if its pdf is given by

$$f(x) = \frac{\lambda^{\alpha}}{\Gamma(\alpha)} x^{\alpha - 1} e^{-\lambda x}, \quad x \in (0, \infty).$$

•
$$\mathbb{E}[X] = \alpha/\lambda$$
, $\operatorname{Var}(X) = \alpha/\lambda^2$.

- $\Gamma(\alpha) \coloneqq \int_0^\infty t^{\alpha-1} e^{-t} dt$ is known as the gamma function. • $\Gamma(\alpha+1) = \alpha \Gamma(\alpha)$; $\Gamma(n) = (n-1)!$, for integer n > 0.
- If $X_1 \sim \text{Gamma}(\alpha_1, \lambda)$ and $X_2 \sim \text{Gamma}(\alpha_2, \lambda)$ are independent, then $X_1 + X_2 \sim \text{Gamma}(\alpha_1 + \alpha_2, \lambda)$.
- If X ~ Gamma(α, λ), then cX ~ Gamma(α, λ/c) for c > 0.
- Important special cases of $Gamma(\alpha, \lambda)$:
 - α is an integer \Longrightarrow $\operatorname{Erl}(\alpha, \lambda)$; $\alpha = 1 \Longrightarrow \operatorname{Exp}(\lambda)$;
 - $\alpha = p/2$, where p is an integer, and $\lambda = 1/2 \Longrightarrow$ chi-square distribution with p degrees of freedom, denoted as χ^2_p . If $\lambda \not = \lambda \not = \lambda$

35 / 65

• Beta distribution is a very flexible distribution that in a finite interval.

Continuous

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

•
$$\mathbb{E}[X] = \alpha/(\alpha + \beta)$$
, $\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

36 / 65

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

•
$$\mathbb{E}[X] = \alpha/(\alpha + \beta)$$
, $\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

• $B(\alpha, \beta) \coloneqq \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$ is known as the beta function.

•
$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

Continuous

- Beta distribution is a very flexible distribution that in a finite interval.
- $X \sim \text{Beta}(\alpha, \beta)$ with $\alpha, \beta > 0$, if its pdf is given by

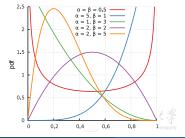
$$f(x) = \frac{x^{\alpha - 1}(1 - x)^{\beta - 1}}{B(\alpha, \beta)}, \ x \in (0, 1).$$

•
$$\mathbb{E}[X] = \alpha/(\alpha + \beta)$$
, $\operatorname{Var}(X) = \frac{\alpha\beta}{(\alpha + \beta)^2(\alpha + \beta + 1)}$.

• $B(\alpha, \beta) \coloneqq \int_0^1 t^{\alpha-1} (1-t)^{\beta-1} dt$ is known as the beta function.

•
$$B(\alpha, \beta) = \frac{\Gamma(\alpha)\Gamma(\beta)}{\Gamma(\alpha+\beta)}.$$

- The $Beta(\alpha, \beta)$ pdf is quite flexible
 - $\alpha = 1, \beta = 1 \Longrightarrow \text{Unif}(0, 1)$
 - $\alpha > 1, \beta = 1 \Longrightarrow$ strictly increasing
 - $\alpha = 1, \beta > 1 \Longrightarrow$ strictly decreasing
 - $\alpha < 1, \beta < 1 \Longrightarrow \mathsf{U}\text{-shaped}$
 - $\alpha > 1, \beta > 1 \Longrightarrow$ unimodal



36 / 65

 X ~ Student's t distribution with p degrees of freedom, denoted as t_p, where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

 X ~ Student's t distribution with p degrees of freedom, denoted as t_p, where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

•
$$\mathbb{E}[X] = 0$$
 if $p > 1$;

 X ~ Student's t distribution with p degrees of freedom, denoted as t_p, where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

37 / 65

 X ~ Student's t distribution with p degrees of freedom, denoted as t_p, where p is an integer, if its pdf is given by

$$f(x) = \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+x^2/p)^{(p+1)/2}}, \ x \in \mathbb{R}.$$

• t₁ is also known as the standard Cauchy distribution, or Cauchy(0, 1), whose pdf is simply

$$f(x) = \frac{1}{\pi(1+x^2)}, \ x \in \mathbb{R}.$$

37 / 65

• The normal distribution (sometimes called the Gaussian distribution) plays a **central role** in a large body of statistics.

- The normal distribution (sometimes called the Gaussian distribution) plays a **central role** in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

- withution (comptimes called the Caussian
- The normal distribution (sometimes called the Gaussian distribution) plays a central role in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

•
$$\mathbb{E}[X] = \mu$$
, $\operatorname{Var}(X) = \sigma^2$.

38 / 65

Normal Distribution

- The normal distribution (sometimes called the Gaussian distribution) plays a **central role** in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

•
$$\mathbb{E}[X] = \mu$$
, $\operatorname{Var}(X) = \sigma^2$.

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z \coloneqq (X \mu) / \sigma \sim \mathcal{N}(0, 1)$.
 - Z is also known as the **standard normal** RV.
 - We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.

•
$$\mathbb{P}(X \le x) = \Phi((x - \mu)/\sigma).$$

- The normal distribution (sometimes called the Gaussian distribution) plays a **central role** in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

•
$$\mathbb{E}[X] = \mu$$
, $\operatorname{Var}(X) = \sigma^2$.

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z \coloneqq (X \mu) / \sigma \sim \mathcal{N}(0, 1)$.
 - Z is also known as the **standard normal** RV.
 - We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.

•
$$\mathbb{P}(X \le x) = \Phi((x - \mu)/\sigma).$$

• If
$$X \sim \mathcal{N}(\mu, \sigma^2)$$
, then $a + bX \sim \mathcal{N}(a + b\mu, b^2\sigma^2)$ for $b > 0$.

- The normal distribution (sometimes called the Gaussian distribution) plays a **central role** in a large body of statistics.
- $X \sim$ normal distribution with mean μ and variance σ^2 , denoted as $\mathcal{N}(\mu, \sigma^2)$, with $\sigma > 0$, if its pdf is given by

$$f(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}, \quad x \in \mathbb{R}.$$

•
$$\mathbb{E}[X] = \mu$$
, $\operatorname{Var}(X) = \sigma^2$.

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z \coloneqq (X \mu) / \sigma \sim \mathcal{N}(0, 1)$.
 - Z is also known as the **standard normal** RV.
 - We often use $\Phi(z)$ and $\phi(z)$ to denote the CDF and pdf of Z.

•
$$\mathbb{P}(X \le x) = \Phi((x - \mu)/\sigma).$$

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $a + bX \sim \mathcal{N}(a + b\mu, b^2\sigma^2)$ for b > 0.
- If $X_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $X_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$ are independent, then $X_1 + X_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$.

• If $Z \sim \mathcal{N}(0, 1)$, then $Z^2 \sim \chi_1^2$.

• If
$$Z \sim \mathcal{N}(0, 1)$$
, then $Z^2 \sim \chi_1^2$.
Proof. Let $Y \coloneqq Z^2$. For $y \in [0, \infty)$,
 $\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y)$.

► Normal Distribution

• If
$$Z \sim \mathcal{N}(0, 1)$$
, then $Z^2 \sim \chi_1^2$.
Proof. Let $Y \coloneqq Z^2$. For $y \in [0, \infty)$,
 $\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y)$.

Then,

$$f(y) = \frac{\mathrm{d}}{\mathrm{d}y}F(y) = \phi(\sqrt{y})\frac{\mathrm{d}}{\mathrm{d}y}\sqrt{y} - \phi(-\sqrt{y})\frac{\mathrm{d}}{\mathrm{d}y}(-\sqrt{y})$$

► Normal Distribution

• If
$$Z \sim \mathcal{N}(0, 1)$$
, then $Z^2 \sim \chi_1^2$.
Proof. Let $Y \coloneqq Z^2$. For $y \in [0, \infty)$,
 $\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y)$.

Then,

$$\begin{split} f(y) &= \frac{\mathrm{d}}{\mathrm{d}y} F(y) = \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} - \phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} (-\sqrt{y}) \\ &= 2\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}}. \end{split}$$

39 / 65

► Normal Distribution

• If
$$Z \sim \mathcal{N}(0, 1)$$
, then $Z^2 \sim \chi_1^2$.
Proof. Let $Y \coloneqq Z^2$. For $y \in [0, \infty)$,
 $\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y)$.

Then,

$$\begin{split} f(y) &= \frac{\mathrm{d}}{\mathrm{d}y} F(y) = \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} - \phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} (-\sqrt{y}) \\ &= 2\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}}. \end{split}$$

If $Y\sim\chi_1^2,$ i.e., $Y\sim\mathrm{Gamma}(1/2,1/2),$ it means its pdf is

$$f(y) = \frac{1}{\sqrt{2}\Gamma(\frac{1}{2})}y^{-\frac{1}{2}}e^{-\frac{y}{2}}.$$

CC BY-SA

• If
$$Z \sim \mathcal{N}(0, 1)$$
, then $Z^2 \sim \chi_1^2$.
Proof. Let $Y \coloneqq Z^2$. For $y \in [0, \infty)$,
 $\mathbb{P}(Y \le y) = \mathbb{P}(Z^2 \le y) = \mathbb{P}(-\sqrt{y} \le Z \le \sqrt{y}) = \int_{-\sqrt{y}}^{\sqrt{y}} \phi(t) dt =: F(y)$.

Then,

$$\begin{split} f(y) &= \frac{\mathrm{d}}{\mathrm{d}y} F(y) = \phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} - \phi(-\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} (-\sqrt{y}) \\ &= 2\phi(\sqrt{y}) \frac{\mathrm{d}}{\mathrm{d}y} \sqrt{y} = \frac{1}{\sqrt{2\pi}} e^{-\frac{y}{2}} y^{-\frac{1}{2}}. \end{split}$$

If $Y\sim\chi_1^2,$ i.e., $Y\sim\mathrm{Gamma}(1/2,1/2),$ it means its pdf is

$$f(y) = \frac{1}{\sqrt{2}\Gamma(\frac{1}{2})}y^{-\frac{1}{2}}e^{-\frac{y}{2}}.$$

The proof is completed by showing that $\Gamma(\frac{1}{2}) = \int_0^\infty t^{-\frac{1}{2}} e^{-t} dt = \sqrt{\pi}$, which can be seen if we convert to polar coordinates.

• If $Z \sim \mathcal{N}(0, 1)$ and $V \sim \chi_p^2$ are independent, then $\frac{Z}{\sqrt{V/p}} \sim t_p$.

• If
$$Z \sim \mathcal{N}(0, 1)$$
 and $V \sim \chi_p^2$ are independent, then $\frac{Z}{\sqrt{V/p}} \sim t_p$.

<u>*Proof.*</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2}-1} e^{-\frac{1}{2}v}, \quad v \in (0,\infty).$$

• If
$$Z \sim \mathcal{N}(0, 1)$$
 and $V \sim \chi_p^2$ are independent, then $\frac{Z}{\sqrt{V/p}} \sim t_p$.

<u>*Proof.*</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2}-1} e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$$

Let
$$Y \coloneqq \sqrt{V/p}$$
. For $y \in (0, \infty)$,
 $f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(Y \le y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(V \le py^2) = \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{py^2} f_V(v) \mathrm{d}v = 2py f_V(py^2).$

• If
$$Z \sim \mathcal{N}(0, 1)$$
 and $V \sim \chi_p^2$ are independent, then $\frac{Z}{\sqrt{V/p}} \sim t_p$.

<u>*Proof.*</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2}-1} e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$$

Let
$$Y \coloneqq \sqrt{V/p}$$
. For $y \in (0, \infty)$,
 $f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(Y \le y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(V \le py^2) = \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{py^2} f_V(v) \mathrm{d}v = 2py f_V(py^2)$.
Let $T \coloneqq \frac{Z}{\sqrt{V/p}} = \frac{Z}{Y}$. For $t \in \mathbb{R}$,
 $\mathbb{P}(T \le t) = \mathbb{P}\left(\frac{Z}{Y} \le t\right) = \mathbb{P}(Z \le tY) = \int_0^\infty \mathbb{P}(Z \le ty) f_Y(y) \mathrm{d}y$. (Why?)

• If
$$Z \sim \mathcal{N}(0, 1)$$
 and $V \sim \chi_p^2$ are independent, then $\frac{Z}{\sqrt{V/p}} \sim t_p$.

<u>*Proof.*</u> Since $V \sim \chi_p^2$, by definition, its pdf is

$$f_V(v) = \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} v^{\frac{p}{2}-1} e^{-\frac{1}{2}v}, \quad v \in (0, \infty).$$

Let
$$Y \coloneqq \sqrt{V/p}$$
. For $y \in (0, \infty)$,
 $f_Y(y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(Y \le y) = \frac{\mathrm{d}}{\mathrm{d}y} \mathbb{P}(V \le py^2) = \frac{\mathrm{d}}{\mathrm{d}y} \int_0^{py^2} f_V(v) \mathrm{d}v = 2py f_V(py^2)$.
Let $T \coloneqq \frac{Z}{\sqrt{V/p}} = \frac{Z}{Y}$. For $t \in \mathbb{R}$,
 $\mathbb{P}(T \le t) = \mathbb{P}\left(\frac{Z}{Y} \le t\right) = \mathbb{P}(Z \le tY) = \int_0^\infty \mathbb{P}(Z \le ty) f_Y(y) \mathrm{d}y$. (Why?)

Then,

$$f_T(t) = \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(T \le t) = \int_0^\infty \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \le ty) f_Y(y) \mathrm{d}y.$$

Normal Distribution

<u>*Proof.*</u> (Cont'd) Note that $\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y \phi(ty).$

Proof. (Cont'd) Note that
$$\frac{d}{dt} \mathbb{P}(Z \le ty) = \frac{d}{dt} \int_{-\infty}^{ty} \phi(z) dz = y\phi(ty)$$
. So,
 $f_T(t) = \int_0^{\infty} y\phi(ty) f_Y(y) dy = \int_0^{\infty} y\phi(ty) 2py f_V(py^2) dy$

Proof. (Cont'd) Note that
$$\frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \le ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y\phi(ty)$$
. So,
 $f_T(t) = \int_0^\infty y\phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y\phi(ty) 2py f_V(py^2) \mathrm{d}y$
 $= \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma\left(\frac{p}{2}\right)} (py^2)^{\frac{p}{2}-1} e^{-\frac{1}{2}py^2} \mathrm{d}y$

$$\underline{Proof.} (Cont'd) \quad \text{Note that } \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \le ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y\phi(ty). \text{ So,} \\
 f_T(t) = \int_0^\infty y\phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y\phi(ty) 2py f_V(py^2) \mathrm{d}y \\
 = \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} (py^2)^{\frac{p}{2}-1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\
 = \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y.$$

$$\begin{array}{ll} \underline{Proof.} \ (\textit{Cont'd}) & \text{Note that } \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y\phi(ty). \text{ So,} \\ f_T(t) = \int_0^\infty y\phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y\phi(ty) 2py f_V(py^2) \mathrm{d}y \\ &= \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} (py^2)^{\frac{p}{2}-1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\ &= \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y. \end{array}$$

Let $x \coloneqq y^2$. Then, integration by substitution shows that $\int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y = \frac{1}{2} \int_0^\infty x^{\frac{p-1}{2}} e^{-\frac{1}{2}(t^2+p)x} \mathrm{d}x \eqqcolon \frac{1}{2} \int_0^\infty x^{\alpha-1} e^{-\lambda x} \mathrm{d}x,$ where $\alpha \coloneqq \frac{p+1}{2}$ and $\lambda \coloneqq \frac{1}{2}(t^2+p)$.

$$\begin{array}{ll} \underline{Proof.} \ (\textit{Cont'd}) & \text{Note that } \frac{\mathrm{d}}{\mathrm{d}t} \mathbb{P}(Z \le ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y\phi(ty). \text{ So,} \\ f_T(t) = \int_0^\infty y\phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y\phi(ty) 2py f_V(py^2) \mathrm{d}y \\ &= \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} (py^2)^{\frac{p}{2}-1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\ &= \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y. \end{array}$$

Let $x \coloneqq y^2$. Then, integration by substitution shows that $\int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y = \frac{1}{2} \int_0^\infty x^{\frac{p-1}{2}} e^{-\frac{1}{2}(t^2+p)x} \mathrm{d}x =: \frac{1}{2} \int_0^\infty x^{\alpha-1} e^{-\lambda x} \mathrm{d}x,$ where $\alpha := \frac{p+1}{2}$ and $\lambda := \frac{1}{2}(t^2+p)$. Recalling the pdf of $\Gamma(\alpha, \lambda)$, it is easy to

see that $\int_0^\infty x^{\alpha-1} e^{-\lambda x} dx = \Gamma(\alpha)/\lambda^{\alpha}$.

$$\begin{array}{ll} \underline{Proof.} \ (\textit{Cont'd}) & \text{Note that } \frac{\mathrm{d}}{\mathrm{d}t} \, \mathbb{P}(Z \leq ty) = \frac{\mathrm{d}}{\mathrm{d}t} \int_{-\infty}^{ty} \phi(z) \mathrm{d}z = y\phi(ty). \text{ So,} \\ f_T(t) = \int_0^\infty y\phi(ty) f_Y(y) \mathrm{d}y = \int_0^\infty y\phi(ty) 2py f_V(py^2) \mathrm{d}y \\ & = \int_0^\infty 2py^2 \cdot \frac{1}{\sqrt{2\pi}} e^{-\frac{t^2y^2}{2}} \cdot \frac{\left(\frac{1}{2}\right)^{\frac{p}{2}}}{\Gamma(\frac{p}{2})} (py^2)^{\frac{p}{2}-1} e^{-\frac{1}{2}py^2} \mathrm{d}y \\ & = \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y. \end{array}$$

Let $x \coloneqq y^2$. Then, integration by substitution shows that $\int_0^\infty y^p e^{-\frac{1}{2}(t^2+p)y^2} \mathrm{d}y = \frac{1}{2} \int_0^\infty x^{\frac{p-1}{2}} e^{-\frac{1}{2}(t^2+p)x} \mathrm{d}x =: \frac{1}{2} \int_0^\infty x^{\alpha-1} e^{-\lambda x} \mathrm{d}x,$

where $\alpha \coloneqq \frac{p+1}{2}$ and $\lambda \coloneqq \frac{1}{2}(t^2 + p)$. Recalling the pdf of $\Gamma(\alpha, \lambda)$, it is easy to see that $\int_0^\infty x^{\alpha-1} e^{-\lambda x} \mathrm{d}x = \Gamma(\alpha)/\lambda^{\alpha}$. Finally,

$$f_T(t) = \frac{1}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} 2^{\frac{1-p}{2}} p^{\frac{p+1}{2}} \cdot \frac{1}{2} \frac{\Gamma(\frac{p+1}{2})}{(1/2)^{(p+1)/2} (t^2+p)^{(p+1)/2}}$$
$$= \frac{\Gamma(\frac{p+1}{2})}{\Gamma(\frac{p}{2})} \frac{1}{(p\pi)^{1/2}} \frac{1}{(1+t^2/p)^{(p+1)/2}}.$$

X ≔ (X₁,..., X_k)^T is said to follow a k-variate normal distribution, if every linear combination of X₁,..., X_k follows a (univariate) normal distribution.

- X ≔ (X₁,..., X_k)^T is said to follow a k-variate normal distribution, if every linear combination of X₁,..., X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.

- X ≔ (X₁,..., X_k)^T is said to follow a k-variate normal distribution, if every linear combination of X₁,..., X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, X = (X₁, X₂)^T is also said to follow a *bivariate* normal distribution.

- X := (X₁,..., X_k)^T is said to follow a k-variate normal distribution, if every linear combination of X₁,..., X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, X = (X₁, X₂)^T is also said to follow a *bivariate* normal distribution.
- $X \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\mu, \Sigma)$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^{k},$$

where $|\Sigma|$ is the determinant of Σ .

- X := (X₁,..., X_k)^T is said to follow a k-variate normal distribution, if every linear combination of X₁,..., X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, X = (X₁, X₂)^T is also said to follow a *bivariate* normal distribution.
- $X \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\mu, \Sigma)$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^{k},$$

where $|\Sigma|$ is the determinant of Σ .

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}} = \mathbb{E}[\boldsymbol{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_k])^{\mathsf{T}} \in \mathbb{R}^k.$
- $\boldsymbol{\Sigma} = (\Sigma_{ij}) = \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{X}) = (\operatorname{Cov}(Z_i, Z_j)) \in \mathbb{R}^{k \times k}.$

- X := (X₁,..., X_k)^T is said to follow a k-variate normal distribution, if every linear combination of X₁,..., X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, X = (X₁, X₂)^T is also said to follow a *bivariate* normal distribution.
- $X \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\mu, \Sigma)$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^{k},$$

where $|\Sigma|$ is the determinant of Σ .

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}} = \mathbb{E}[\boldsymbol{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_k])^{\mathsf{T}} \in \mathbb{R}^k.$
- $\boldsymbol{\Sigma} = (\Sigma_{ij}) = \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{X}) = (\operatorname{Cov}(Z_i, Z_j)) \in \mathbb{R}^{k \times k}.$
- Σ is a symmetric and positive definite matrix.

- X := (X₁,..., X_k)^T is said to follow a k-variate normal distribution, if every linear combination of X₁,..., X_k follows a (univariate) normal distribution.
 - X is also called a (k dimensional) normal random vector.
 - If k = 2, X = (X₁, X₂)^T is also said to follow a *bivariate* normal distribution.
- $X \sim$ a k-variate normal distribution, denoted as $\mathcal{N}(\mu, \Sigma)$, if its joint pdf is given by

$$f(\boldsymbol{x}) = \frac{1}{(2\pi)^{k/2} |\boldsymbol{\Sigma}|^{1/2}} e^{-\frac{1}{2} (\boldsymbol{x} - \boldsymbol{\mu})^{\mathsf{T}} \boldsymbol{\Sigma}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})}, \ \boldsymbol{x} \in \mathbb{R}^{k},$$

where $|\Sigma|$ is the determinant of Σ .

- $\boldsymbol{\mu} = (\mu_1, \dots, \mu_k)^{\mathsf{T}} = \mathbb{E}[\boldsymbol{X}] = (\mathbb{E}[X_1], \dots, \mathbb{E}[X_k])^{\mathsf{T}} \in \mathbb{R}^k.$
- $\boldsymbol{\Sigma} = (\Sigma_{ij}) = \operatorname{Cov}(\boldsymbol{X}, \boldsymbol{X}) = (\operatorname{Cov}(Z_i, Z_j)) \in \mathbb{R}^{k \times k}.$
- Σ is a symmetric and positive definite matrix.
- $X_i \sim \mathcal{N}(\mu_i, \sigma_i^2)$, $i = 1, \dots, k$.

- If $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ is k dimensional, then
 - $Z := A^{-1}(X \mu) \sim \mathcal{N}(0, I)$, where A satisfies $\Sigma = AA^{\mathsf{T}}$ (Cholesky decomposition), $0 \in \mathbb{R}^k$, and $I \in \mathbb{R}^{k \times k}$ denotes the identity matrix.

- If $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ is k dimensional, then
 - $Z := A^{-1}(X \mu) \sim \mathcal{N}(\mathbf{0}, I)$, where A satisfies $\Sigma = AA^{\mathsf{T}}$ (Cholesky decomposition), $\mathbf{0} \in \mathbb{R}^k$, and $I \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
 - $Z = (Z_1, ..., Z_k)^{\mathsf{T}}$, where $Z_i \sim \mathcal{N}(0, 1)$, i = 1, ..., k, iid.

- If $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ is k dimensional, then
 - $Z := A^{-1}(X \mu) \sim \mathcal{N}(0, I)$, where A satisfies $\Sigma = AA^{\mathsf{T}}$ (Cholesky decomposition), $0 \in \mathbb{R}^k$, and $I \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
 - $Z = (Z_1, ..., Z_k)^{\mathsf{T}}$, where $Z_i \sim \mathcal{N}(0, 1)$, i = 1, ..., k, iid.
 - $oldsymbol{a}+oldsymbol{B}oldsymbol{X}\sim\mathcal{N}(oldsymbol{a}+oldsymbol{B}oldsymbol{\mu},oldsymbol{B}\Sigma oldsymbol{B}^{\intercal}).^{\dagger}$

 † The multivariate normal distribution will be degenerate if B does not have full row rank (B不行满秩). $^{\circ}$ Tong UNIVI

• If $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ is k dimensional, then

- $Z := A^{-1}(X \mu) \sim \mathcal{N}(0, I)$, where A satisfies $\Sigma = AA^{\mathsf{T}}$ (Cholesky decomposition), $0 \in \mathbb{R}^k$, and $I \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
- $Z = (Z_1, ..., Z_k)^{\mathsf{T}}$, where $Z_i \sim \mathcal{N}(0, 1)$, i = 1, ..., k, iid.
- $oldsymbol{a} + oldsymbol{B}oldsymbol{X} \sim \mathcal{N}(oldsymbol{a} + oldsymbol{B}oldsymbol{\mu}, oldsymbol{B}\Sigma oldsymbol{B}^{\intercal}).^{\dagger}$
- Suppose X is a k dimensional random vector. Then, $X \sim \mathcal{N}(\mu, \Sigma) \iff$ There exist $\mu \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times \ell}$ such that $X = \mu + AZ$, where $Z \sim \mathcal{N}(0, I)$ with $0 \in \mathbb{R}^{\ell}$ and $I \in \mathbb{R}^{\ell \times \ell}$.

 † The multivariate normal distribution will be degenerate if B does not have full row rank (B 不行满秩). Towa UNIVERS

• If $oldsymbol{X} \sim \mathcal{N}(oldsymbol{\mu}, oldsymbol{\Sigma})$ is k dimensional, then

- $Z := A^{-1}(X \mu) \sim \mathcal{N}(0, I)$, where A satisfies $\Sigma = AA^{\mathsf{T}}$ (Cholesky decomposition), $0 \in \mathbb{R}^k$, and $I \in \mathbb{R}^{k \times k}$ denotes the identity matrix.
- $Z = (Z_1, ..., Z_k)^{\mathsf{T}}$, where $Z_i \sim \mathcal{N}(0, 1)$, i = 1, ..., k, iid.
- $oldsymbol{a}+oldsymbol{B}oldsymbol{X}\sim\mathcal{N}(oldsymbol{a}+oldsymbol{B}oldsymbol{\mu},oldsymbol{B}\Sigma oldsymbol{B}^{\intercal}).^{\dagger}$
- Suppose X is a k dimensional random vector. Then, $X \sim \mathcal{N}(\mu, \Sigma) \iff$ There exist $\mu \in \mathbb{R}^k$ and $A \in \mathbb{R}^{k \times \ell}$ such that $X = \mu + AZ$, where $Z \sim \mathcal{N}(\mathbf{0}, I)$ with $\mathbf{0} \in \mathbb{R}^{\ell}$ and $I \in \mathbb{R}^{\ell \times \ell}$.
 - Such A must satisfy $\Sigma = AA^{\mathsf{T}}$.

[†]The multivariate normal distribution will be degenerate if B does not have full row rank (B不行满秩).^{10 TONG UNIVERST}

• Bivariate normal distribution: $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\mathsf{T}}$, and

$$\boldsymbol{\Sigma} = \begin{bmatrix} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{bmatrix} \eqqcolon \begin{bmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{bmatrix},$$

and the joint pdf is

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \\ \times e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}.$$

• Bivariate normal distribution: $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$, where $\boldsymbol{\mu} = (\mu_1, \mu_2)^{\mathsf{T}}$, and

$$\boldsymbol{\Sigma} = \left[\begin{array}{cc} \operatorname{Cov}(X_1, X_1) & \operatorname{Cov}(X_1, X_2) \\ \operatorname{Cov}(X_2, X_1) & \operatorname{Cov}(X_2, X_2) \end{array} \right] \eqqcolon \left[\begin{array}{cc} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{array} \right],$$

and the joint pdf is

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{1-\rho^2}} \\ \times e^{-\frac{1}{2(1-\rho^2)}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 - 2\rho\left(\frac{x_1-\mu_1}{\sigma_1}\right)\left(\frac{x_2-\mu_2}{\sigma_2}\right) + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}.$$

• To see $\rho = 0 \Longrightarrow X_1 \perp X_2$, let $\rho = 0$, and note

$$f(x_1, x_2) = \frac{1}{2\pi\sigma_1\sigma_2} e^{-\frac{1}{2}\left[\left(\frac{x_1-\mu_1}{\sigma_1}\right)^2 + \left(\frac{x_2-\mu_2}{\sigma_2}\right)^2\right]}$$
$$= \frac{1}{\sqrt{2\pi}\sigma_1} e^{-\frac{(x_1-\mu_1)^2}{2\sigma_1^2}} \times \frac{1}{\sqrt{2\pi}\sigma_2} e^{-\frac{(x_2-\mu_2)^2}{2\sigma_2^2}} = f_{X_1}(x_1)f_{X_2}(x_2).$$

• If $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_i \sim \mathcal{N}(\mu_i, \sigma^2)$, i = 1, 2, then $X_1 + X_2 \perp X_1 - X_2$.

• If $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_i \sim \mathcal{N}(\mu_i, \sigma^2)$, i = 1, 2, then $X_1 + X_2 \perp X_1 - X_2$.

Proof. Note that

$$\boldsymbol{Y} \coloneqq \left[\begin{array}{c} X_1 + X_2 \\ X_1 - X_2 \end{array} \right] = \left[\begin{array}{c} 1 & 1 \\ 1 & -1 \end{array} \right] \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right] \eqqcolon \boldsymbol{B} \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right]$$

• If $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_i \sim \mathcal{N}(\mu_i, \sigma^2)$, i = 1, 2, then $X_1 + X_2 \perp X_1 - X_2$.

<u>Proof.</u> Note that

$$\boldsymbol{Y} \coloneqq \begin{bmatrix} X_1 + X_2 \\ X_1 - X_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \eqqcolon \boldsymbol{B} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Since B has full row rank, $Y \sim \mathcal{N}(B\mu, B\Sigma B^{\mathsf{T}})$, which is non-degenerate.

• If $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_i \sim \mathcal{N}(\mu_i, \sigma^2)$, i = 1, 2, then $X_1 + X_2 \perp X_1 - X_2$.

Proof. Note that

$$\boldsymbol{Y} \coloneqq \begin{bmatrix} X_1 + X_2 \\ X_1 - X_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \eqqcolon \boldsymbol{B} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Since B has full row rank, $Y \sim \mathcal{N}(B\mu, B\Sigma B^{\mathsf{T}})$, which is non-degenerate. Hence, to prove $X_1 + X_2 \perp X_1 - X_2$, it suffices to show $\operatorname{Cov}(X_1 + X_2, X_1 - X_2) = 0$.

• If $(X_1, X_2)^{\mathsf{T}} \sim \mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$ and $X_i \sim \mathcal{N}(\mu_i, \sigma^2)$, i = 1, 2, then $X_1 + X_2 \perp X_1 - X_2$.

Proof. Note that

$$\boldsymbol{Y} \coloneqq \begin{bmatrix} X_1 + X_2 \\ X_1 - X_2 \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \eqqcolon \boldsymbol{B} \begin{bmatrix} X_1 \\ X_2 \end{bmatrix}$$

Since B has full row rank, $Y \sim \mathcal{N}(B\mu, B\Sigma B^{\mathsf{T}})$, which is non-degenerate. Hence, to prove $X_1 + X_2 \perp X_1 - X_2$, it suffices to show $\operatorname{Cov}(X_1 + X_2, X_1 - X_2) = 0$. Note that

$$Cov(X_1 + X_2, X_1 - X_2) = Cov(X_1, X_1) - Cov(X_2, X_2)$$

= $\sigma^2 - \sigma^2 = 0.$

- There are many other relationships among various probability distributions.
 - See, for example, Song (2005);
 - Or, Leemis & McQueston (2008) and their online interactive graph http://www.math.wm.edu/~leemis/chart/UDR/UDR.html

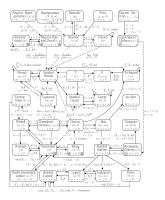


Figure: Relationships Among 35 Distributions (from Song (2005))

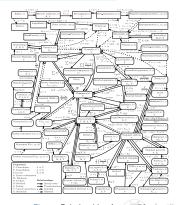


Figure: Relationships Among 76 Distributions (from Leemis & McQueston (2008))

Relationships

1 Probability Space

- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- **5** Useful Inequalities
- 6 Convergence
- Properties of a Random Sample

Markov's Inequality

Let X be a RV. If $\mathbb{P}(X\geq 0)=1$ and $\mathbb{P}(X=0)<1,$ then, for any r>0, $\mathbb{P}(X\geq r)\leq \frac{\mathbb{E}[X]}{r},$

with equality if and only if

$$X = \begin{cases} r, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p. \end{cases}$$

Markov's Inequality

Let X be a RV. If $\mathbb{P}(X \ge 0) = 1$ and $\mathbb{P}(X = 0) < 1$, then, for any r > 0, $\mathbb{P}(X \ge r) \le \frac{\mathbb{E}[X]}{r}$, with equality if and only if $X = \begin{cases} r, & \text{with probability } p, \\ 0, & \text{with probability } 1 - p. \end{cases}$

• Markov's Inequality has many variations, which are usually called Chebyshev's Inequality.

Chebyshev's Inequality

Let X be a RV and $g(\boldsymbol{x})$ be a nonnegative function. Then, for any r>0,

$$\mathbb{P}(g(X) \ge r) \le \frac{\mathbb{E}[g(X)]}{r}$$

Chebyshev's Inequality

Let X be a RV and $g(\boldsymbol{x})$ be a nonnegative function. Then, for any r>0,

$$\mathbb{P}(g(X) \geq r) \leq \frac{\mathbb{E}[g(X)]}{r}$$

Chebyshev's Inequality

Let X be a RV. Then, for any r, p > 0,

$$\mathbb{P}(|X| \ge r) \le \frac{\mathbb{E}[|X|^p]}{r^p},$$
$$\mathbb{P}(|X-\mu| \ge r) \le \frac{\sigma^2}{r^2},$$

where $\mu \coloneqq \mathbb{E}[X]$, and $\sigma^2 \coloneqq \operatorname{Var}(X)$.

CC BY-SA

• Chebyshev's Inequality is typically very conservative.

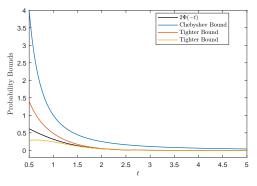
- Chebyshev's Inequality is typically very conservative.
- If $Z \sim \mathcal{N}(0, 1)$, a tighter bound is available: For any t > 0,

$$2\Phi(-t) = \mathbb{P}(|Z| \ge t) \le \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^2/2},$$

$$2\Phi(-t) = \mathbb{P}(|Z| \ge t) \ge \sqrt{\frac{2}{\pi}} \frac{t}{1+t^2} e^{-t^2/2},$$

- Chebyshev's Inequality is typically very conservative.
- If $Z \sim \mathcal{N}(0, 1)$, a tighter bound is available: For any t > 0,

$$\begin{aligned} & 2\Phi(-t) = \mathbb{P}(|Z| \ge t) \le \sqrt{\frac{2}{\pi}} \frac{1}{t} e^{-t^2/2}, \\ & 2\Phi(-t) = \mathbb{P}(|Z| \ge t) \ge \sqrt{\frac{2}{\pi}} \frac{t}{1+t^2} e^{-t^2/2} \end{aligned}$$



• A function g(x) is **convex** if

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y),$$

for all x and y, and $\lambda \in (0, 1)$.

• A function g(x) is **convex** if

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y),$$

for all x and y, and $\lambda \in (0, 1)$.

• A function g(x) is concave if -g(x) is convex.

51 / 65

► Jensen's Inequality

• A function g(x) is **convex** if

$$g(\lambda x + (1 - \lambda)y) \le \lambda g(x) + (1 - \lambda)g(y),$$

for all x and y, and $\lambda \in (0, 1)$.

• A function g(x) is concave if -g(x) is convex.

Jensen's Inequality

Let X be a RV. If g(x) is a convex function, then

 $\mathbb{E}[g(X)] \ge g(\mathbb{E}[X]),$

with equality if and only if g(x) is a linear function on some set A such that $\mathbb{P}(X \in A) = 1$.

► Jensen's Inequality

Hölder's Inequality

Let X and Y be any two RVs, and let p and q be any two positive numbers (necessarily greater than 1) satisfying

$$\frac{1}{p} + \frac{1}{q} = 1$$

Then,

 $|\mathbb{E}[XY]| \le \mathbb{E}[|XY|] \le \{\mathbb{E}[|X|^p]\}^{1/p} \{\mathbb{E}[|Y|^q]\}^{1/q}.$

Cauchy-Schwarz Inequality (p = q = 2)

Let X and Y be any two RVs, then

 $|\mathbb{E}[XY]| \le \mathbb{E}[|XY|] \le \{\mathbb{E}[|X|^2]\}^{1/2} \{\mathbb{E}[|Y|^2]\}^{1/2}.$

Cauchy-Schwarz Inequality (p = q = 2)

Let X and Y be any two RVs, then

 $|\mathbb{E}[XY]| \le \mathbb{E}[|XY|] \le \{\mathbb{E}[|X|^2]\}^{1/2} \{\mathbb{E}[|Y|^2]\}^{1/2}.$

Liapounov's Inequality $(Y \equiv 1)$

Let X be a RV, then for any s > r > 1,

 $\{\mathbb{E}[|X|^r]\}^{1/r} \leq \{\mathbb{E}[|X|^s]\}^{1/s}.$

Minkowski's Inequality

Let X and Y be any two RVs. Then, for $p \ge 1$,

 $\{\mathbb{E}[|X+Y|^p]\}^{1/p} \leq \{\mathbb{E}[|X|^p]\}^{1/p} + \{\mathbb{E}[|Y|^p]\}^{1/p}.$

Minkowski's Inequality

Let X and Y be any two RVs. Then, for $p \ge 1$,

 $\{\mathbb{E}[|X+Y|^p]\}^{1/p} \le \{\mathbb{E}[|X|^p]\}^{1/p} + \{\mathbb{E}[|Y|^p]\}^{1/p}.$

• **Remark**: The preceding Hölder's Inequality (including its special cases) and Minkowski's Inequality also apply to numerical sums where there is no explicit reference to an expectation.

1 Probability Space

- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- Useful Inequalities

Properties of a Random Sample

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X.

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X.

• Convergence Almost Surely (a.s.), $X_n \xrightarrow{a.s.} X$:

$$\mathbb{P}\left(\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X.

• Convergence Almost Surely (a.s.), $X_n \xrightarrow{a.s.} X$:

$$\mathbb{P}\left(\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

• Convergence in Probability, $X_n \xrightarrow{p} X$:

 $\lim_{n\to\infty}\mathbb{P}\left(\{\omega:|X_n(\omega)-X(\omega)|>\epsilon\}\right)=0, \text{ for any } \epsilon>0.$

Definition

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X.

• Convergence Almost Surely (a.s.), $X_n \xrightarrow{a.s.} X$:

$$\mathbb{P}\left(\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

• Convergence in Probability, $X_n \xrightarrow{p} X$:

 $\lim_{n\to\infty}\mathbb{P}\left(\{\omega:|X_n(\omega)-X(\omega)|>\epsilon\}\right)=0, \text{ for any }\epsilon>0.$

• Convergence in Distribution, $X_n \xrightarrow{d} X$, $X_n \Rightarrow X$, or $X_n \xrightarrow{d}$ distribution of X:

 $\lim_{n\to\infty}F_n(x)=F(x)\text{, for any continuous point }x\text{ of }F(x)\text{,}$ where F_n and F are CDF of X_n and X, respectively.

Definition

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X.

• Convergence Almost Surely (a.s.), $X_n \xrightarrow{a.s.} X$:

$$\mathbb{P}\left(\left\{\omega\in\Omega:\lim_{n\to\infty}X_n(\omega)=X(\omega)\right\}\right)=1.$$

• Convergence in Probability, $X_n \xrightarrow{p} X$:

 $\lim_{n\to\infty}\mathbb{P}\left(\{\omega:|X_n(\omega)-X(\omega)|>\epsilon\}\right)=0, \text{ for any }\epsilon>0.$

• Convergence in Distribution, $X_n \xrightarrow{d} X$, $X_n \Rightarrow X$, or $X_n \xrightarrow{d}$ distribution of X:

 $\lim_{n\to\infty}F_n(x)=F(x)\text{, for any continuous point }x\text{ of }F(x)\text{,}$ where F_n and F are CDF of X_n and X, respectively.

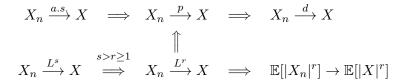
• Convergence in L^r Norm $(r \in [1, \infty))$, $X_n \xrightarrow{L^r} X$:

$$\lim_{n \to \infty} \mathbb{E}(|X_n - X|^r) = 0,$$

given $\mathbb{E}[|X_n|^r] < \infty$ for any $n \geq 1$ and $\mathbb{E}[|X|^r] < \infty$.

Relationships

• Simple relationships:



► Relationships

• Simple relationships:

•
$$X_n \xrightarrow{d}$$
 a constant $c \implies X_n \xrightarrow{p} c$.

► Relationships

• Simple relationships:

•
$$X_n \stackrel{d}{\longrightarrow}$$
 a constant $c \implies X_n \stackrel{p}{\longrightarrow} c$.

•
$$X_n \xrightarrow{L^1} X \implies \mathbb{E}[X_n] \to \mathbb{E}[X].$$

Relationships

• Simple relationships:

•
$$X_n \xrightarrow{d}$$
 a constant $c \implies X_n \xrightarrow{p} c$.

•
$$X_n \xrightarrow{L^1} X \implies \mathbb{E}[X_n] \to \mathbb{E}[X].$$

• $X_n \xrightarrow{a.s.} X \iff \sup_{j \ge n} |X_j - X| \xrightarrow{p} 0.$

Relationships

• Simple relationships:

•
$$X_n \xrightarrow{d}$$
 a constant $c \implies X_n \xrightarrow{p} c$.

•
$$X_n \xrightarrow{L^1} X \implies \mathbb{E}[X_n] \to \mathbb{E}[X].$$

• $X_n \xrightarrow{a.s.} X \iff \sup_{j \ge n} |X_j - X| \xrightarrow{p} 0.$

• $X_n \xrightarrow{p} X \iff$ For every subsequence $X_n(m)$ there is a further subsequence $X_n(m_k)$ such that $X_n(m_k) \xrightarrow{a.s.} X$.

• Question: If $X_n \xrightarrow{d} X$ or $X_n \xrightarrow{p} X$ or $X_n \xrightarrow{a.s.} X$, does it imply $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

• Question: If $X_n \xrightarrow{d} X$ or $X_n \xrightarrow{p} X$ or $X_n \xrightarrow{a.s.} X$, does it imply $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

Monotone Convergence Theorem (MCT)

Suppose $X_n \xrightarrow{a.s.} X$, and $0 \le X_1 \le X_2 \le \cdots$ a.s.. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

• Question: If $X_n \xrightarrow{d} X$ or $X_n \xrightarrow{p} X$ or $X_n \xrightarrow{a.s.} X$, does it imply $\mathbb{E}[X_n] \to \mathbb{E}[X]$?

Monotone Convergence Theorem (MCT)

Suppose
$$X_n \xrightarrow{a.s.} X$$
, and $0 \le X_1 \le X_2 \le \cdots$ a.s.. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Fatou's Lemma

Suppose $X_n \ge Y$ a.s. for all n where $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[\liminf_{n \to \infty} X_n] \le \liminf_{n \to \infty} \mathbb{E}[X_n]$. In particular, if $X_n \ge 0$ a.s. for all n, then the result holds.

Dominated Convergence Theorem (DCT)

Suppose
$$X_n \xrightarrow{a.s.} X$$
, $|X_n| \leq Y$ a.s. for all n , and $\mathbb{E}[|Y|] < \infty$. Then $\mathbb{E}[X_n] \to \mathbb{E}[X]$.

Dominated Convergence Theorem (DCT)

 $\begin{array}{l} \text{Suppose } X_n \xrightarrow{a.s.} X \text{, } |X_n| \leq Y \text{ a.s. for all } n \text{, and } \mathbb{E}[|Y|] < \\ \infty. \text{ Then } \mathbb{E}[X_n] \to \mathbb{E}[X]. \end{array}$

• The DCT is still true if $\xrightarrow{a.s.}$ is replaced by \xrightarrow{p} .

Dominated Convergence Theorem (DCT)

 $\begin{array}{l} \text{Suppose } X_n \xrightarrow{a.s.} X, \ |X_n| \leq Y \text{ a.s. for all } n, \text{ and } \mathbb{E}[|Y|] < \\ \infty. \ \text{Then } \mathbb{E}[X_n] \to \mathbb{E}[X]. \end{array}$

- The DCT is still true if $\xrightarrow{a.s.}$ is replaced by \xrightarrow{p} .
- An even more general result: Suppose $X_n \xrightarrow{p} X$, $|X_n| \leq Y$ a.s. for all n, and $\mathbb{E}[|Y|^r] < \infty$ with $r \geq 1$. Then, $\mathbb{E}[|X_n|^r] < \infty$, $\mathbb{E}[|X|^r] < \infty$, and $X_n \xrightarrow{L^r} X$.

• X = Y a.s., if *any one* of the following holds:

•
$$X_n \xrightarrow{a.s.} X$$
 and $X_n \xrightarrow{a.s.} Y$;
• $X \xrightarrow{p} X$ and $X \xrightarrow{p} Y$;

•
$$X_n \xrightarrow{i} X$$
 and $X_n \xrightarrow{i} Y$;

•
$$X_n \xrightarrow{L} X$$
 and $X_n \xrightarrow{L} Y$.

• X = Y a.s., if *any one* of the following holds:

•
$$X_n \xrightarrow{a.s.} X$$
 and $X_n \xrightarrow{a.s.} Y$;
• $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
• $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.

• If
$$X_n \xrightarrow{a.s.} X$$
 and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$.

• X = Y a.s., if *any one* of the following holds:

•
$$X_n \xrightarrow{a.s.} X$$
 and $X_n \xrightarrow{a.s.} Y$;
• $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$;
• $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.

• If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)

- X = Y a.s., if *any one* of the following holds:
 - $X_n \xrightarrow{a.s.} X$ and $X_n \xrightarrow{a.s.} Y$; • $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$; • $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)
- If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{p} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{p} aX + bY$; $X_nY_n \xrightarrow{p} XY$. (Due to CMT)

- X = Y a.s., if any one of the following holds:
 X_n a.s. X and X_n a.s. Y;
 X_n p X and X_n P Y;
 X_n L^r X and X_n L^r Y.
 If X_n a.s. X and Y_n a.s. Y, then (X_n, Y_n)^T a.s. (X, Y)^T. ⇒ aX_n + bY_n a.s. aX + bY; X_nY_n a.s. XY. (Due to CMT)
 If X_n P X and Y_n P X, then (X_n, Y_n)^T P (X, Y)^T. ⇒ aX_n + bY_n P aX + bY; X_nY_n A.S. XY. (Due to CMT)
- If $X_n \xrightarrow{L^r} X$ and $Y_n \xrightarrow{L^r} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{L^r} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{L^r} aX + bY$.

- X = Y a.s., if any one of the following holds:
 X_n a.s./x A and X_n d.s./y;
 - $X_n \xrightarrow{p} X$ and $X_n \xrightarrow{p} Y$; • $X_n \xrightarrow{L^r} X$ and $X_n \xrightarrow{L^r} Y$.
- If $X_n \xrightarrow{a.s.} X$ and $Y_n \xrightarrow{a.s.} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{a.s.} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{a.s.} aX + bY$; $X_nY_n \xrightarrow{a.s.} XY$. (Due to CMT)
- If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{p} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{p} aX + bY$; $X_nY_n \xrightarrow{p} XY$. (Due to CMT)
- If $X_n \xrightarrow{L^r} X$ and $Y_n \xrightarrow{L^r} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{L^r} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{L^r} aX + bY$.
- None of the above are true for convergence in distribution.

- X = Y a.s., if any one of the following holds:
 X_n ^{a.s.}→ X and X_n ^{a.s.}→ Y;
 X_n ^p→ X and X_n ^p→ Y;
 X_n ^{L^r}→ X and X_n ^{L^r}→ Y.
 If X_n ^{a.s.}→ X and Y_n ^{a.s.}→ Y, then (X_n, Y_n)^T ^{a.s.}→ (X, Y)^T.
 ⇒ aX_n + bY_n ^{a.s.}→ aX + bY; X_nY_n ^{a.s.}→ XY. (Due to CMT)
- If $X_n \xrightarrow{p} X$ and $Y_n \xrightarrow{p} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{p} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{p} aX + bY; X_nY_n \xrightarrow{p} XY$. (Due to CMT)
- If $X_n \xrightarrow{L^r} X$ and $Y_n \xrightarrow{L^r} Y$, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{L^r} (X, Y)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{L^r} aX + bY$.
- None of the above are true for convergence in distribution.
- If $X_n \xrightarrow{d} X$ and $Y_n \xrightarrow{d}$ constant c, then $(X_n, Y_n)^{\mathsf{T}} \xrightarrow{d} (X, c)^{\mathsf{T}}$. $\implies aX_n + bY_n \xrightarrow{d} aX + bc; X_nY_n \xrightarrow{d} cX$. (Due to CMT; also known as Slutsky's theorem)

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X \in D) = 0$. Then,

$X_n \xrightarrow{a.s.} X$	\implies	$g(X_n) \xrightarrow{a.s.} g(X);$
$X_n \xrightarrow{p} X$	\implies	$g(X_n) \xrightarrow{p} g(X);$
$X_n \xrightarrow{d} X$	\implies	$g(X_n) \xrightarrow{d} g(X).$

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X \in D) = 0$. Then,

$$\begin{array}{rcl} X_n \xrightarrow{a.s.} X & \Longrightarrow & g(X_n) \xrightarrow{a.s.} g(X); \\ X_n \xrightarrow{p} X & \Longrightarrow & g(X_n) \xrightarrow{p} g(X); \\ X_n \xrightarrow{d} X & \Longrightarrow & g(X_n) \xrightarrow{d} g(X). \end{array}$$

• CMT also holds for random vectors.

Continuous Mapping Theorem (CMT)

Consider a sequence of RVs $\{X_n : n \ge 1\}$ and another RV X. Suppose g is a function that has the set of discontinuity points D such that $\mathbb{P}(X \in D) = 0$. Then,

$$\begin{array}{rcl} X_n \xrightarrow{a.s.} X & \Longrightarrow & g(X_n) \xrightarrow{a.s.} g(X); \\ X_n \xrightarrow{p} X & \Longrightarrow & g(X_n) \xrightarrow{p} g(X); \\ X_n \xrightarrow{d} X & \Longrightarrow & g(X_n) \xrightarrow{d} g(X). \end{array}$$

- CMT also holds for random vectors.
- Caution: For convergence in L^r norm, stronger assumption of g than continuity is required to ensure $g(X_n) \xrightarrow{L^r} g(X)$.

1 Probability Space

- 2 Random Variables & Distributions
- 3 Expectations
- 4 Common Distributions
- Useful Inequalities
- 6 Convergence

Properties of a Random Sample

Properties of a Random Sample

 Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.

Properties of a Random Sample

 Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.

• Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

Properties of a Random Sample

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

• For a general distribution, the following is true:

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

For a general distribution, the following is true:
 ① X̄ is an unbiased estimator of μ, i.e., E[X̄] = μ;

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - 2 S^2 is an **unbiased** estimator of σ^2 , i.e, $\mathbb{E}[S^2] = \sigma^2$;

 Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.

Define

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 := \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

For a general distribution, the following is true:
1 X̄ is an unbiased estimator of μ, i.e., E[X̄] = μ;
2 S² is an unbiased estimator of σ², i.e, E[S²] = σ²;
3 Var(X̄) = σ²/n.

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 := \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true: *X̄* is an unbiased estimator of μ, i.e., E[*X̄*] = μ;
 S² is an unbiased estimator of σ², i.e, E[S²] = σ²;
 Var(*X̄*) = σ²/n.
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 := \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 ① X̄ is an unbiased estimator of μ, i.e., E[X̄] = μ;
 ② S² is an unbiased estimator of σ², i.e, E[S²] = σ²;
 ③ Var(X̄) = σ²/n.
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have: **4** $\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$, i.e., $\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$;

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 := \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 1 X
 is an unbiased estimator of μ, i.e., E[X̄] = μ;
 - 2 S^2 is an **unbiased** estimator of σ^2 , i.e., $\mathbb{E}[S^2] = \sigma^2$; 3 $Var(\bar{X}) = \sigma^2/n$.
- If the distribution is N(μ, σ²), we further have:
 4 X̄ ~ N(μ, σ²/n), i.e., X̄-μ/σ/√n ~ N(0, 1);
 5 X̄ ⊥ S²;

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - 2 S² is an unbiased estimator of σ², i.e, E[S²] = σ²;
 3 Var(X̄) = σ²/n.
- If the distribution is $\mathcal{N}(\mu,\sigma^2)$, we further have:

- Let X₁,..., X_n be a random sample from a distribution with mean μ and variance σ², i.e., X₁,..., X_n are iid, and E[X_i] = μ and Var(X_i) = σ², i = 1,..., n.
- Define

$$\bar{X} \coloneqq \frac{1}{n} \sum_{i=1}^{n} X_i$$
, and $S^2 \coloneqq \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n-1}$.

- For a general distribution, the following is true:
 - **1** \bar{X} is an **unbiased** estimator of μ , i.e., $\mathbb{E}[\bar{X}] = \mu$;
 - 2 S² is an unbiased estimator of σ², i.e, E[S²] = σ²;
 3 Var(X̄) = σ²/n.
- If the distribution is $\mathcal{N}(\mu, \sigma^2)$, we further have:

4
$$\bar{X} \sim \mathcal{N}(\mu, \sigma^2/n)$$
, i.e., $\frac{X-\mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$;
5 $\bar{X} \perp S^2$;
6 $(n-1)S^2/\sigma^2 \sim \chi^2_{n-1}$;
7 $\frac{\bar{X}-\mu}{S/\sqrt{n}} \sim t_{n-1}$.

• For a general distribution, what can we say about the distribution of \bar{X} ?

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $Var(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $Var(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote \bar{X} as \bar{X}_n , to explicitly indicate the effect of sample size n.

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $Var(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote \bar{X} as \bar{X}_n , to explicitly indicate the effect of sample size n.

Weak Law of Large Numbers (WLLN)

Suppose X_1, \ldots, X_n are iid with mean μ and variance $\sigma^2 < \infty$.[†] Then, $\bar{X}_n \xrightarrow{p} \mu$, as $n \to \infty$.

[†]Mutual independence can be weakened to pairwise independence; $\sigma^2 < \infty$ can be weakened to $\mathbb{E}[|X_i|] \leq \infty$.

- For a general distribution, what can we say about the distribution of \bar{X} ?
- $Var(\bar{X}) = \sigma^2/n$ intuitively means that the randomness of \bar{X} vanishes and \bar{X} concentrates around μ when n gets large.
- Denote \bar{X} as \bar{X}_n , to explicitly indicate the effect of sample size n.

Weak Law of Large Numbers (WLLN)

Suppose X_1, \ldots, X_n are iid with mean μ and variance $\sigma^2 < \infty$.[†] Then, $\bar{X}_n \xrightarrow{p} \mu$, as $n \to \infty$.

Strong Law of Large Numbers (SLLN)

Suppose X_1, \ldots, X_n are iid with mean μ and variance $\sigma^2 < \infty$.[†] Then, $\bar{X}_n \xrightarrow{a.s.} \mu$, as $n \to \infty$.

^TMutual independence can be weakened to pairwise independence; $\sigma^2 < \infty$ can be weakened to $\mathbb{E}[|X_i|] \leq \infty$.

- Note that for normal distribution, $\frac{X_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$?

- Note that for normal distribution, $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$?
- Note that $\mathbb{E}\left[\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right] = 0$ and $\operatorname{Var}\left(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right) = 1$, regardless of the distribution and the value of n.

- Note that for normal distribution, $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}} \sim \mathcal{N}(0, 1)$, regardless of the value of n.
- For a general distribution, what can we say about the distribution of $\frac{\bar{X}_n \mu}{\sigma/\sqrt{n}}$?
- Note that $\mathbb{E}\left[\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right] = 0$ and $\operatorname{Var}\left(\frac{\bar{X}_n-\mu}{\sigma/\sqrt{n}}\right) = 1$, regardless of the distribution and the value of n.

Central Limit Theorem (CLT)

Suppose X_1, \ldots, X_n are iid with mean μ and variance $\sigma^2 \in (0, \infty)$. Then, as $n \to \infty$,

$$\frac{\bar{X}_n - \mu}{\sigma/\sqrt{n}} \stackrel{d}{\longrightarrow} \mathcal{N}(0, 1).$$